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Abstract—The Dynamic Time Warping (DTW) similarity
measure is widely used in many time series data mining ap-
plications. It computes the cost of aligning two series, smaller
costs indicating more similar series. Most applications require
tuning of DTW’s Warping Window (WW) parameter in order to
achieve good performance. This parameter controls the amount
of warping allowed, reducing pathological alignments, with the
added benefit of speeding up computation. However, since DTW
is in itself very costly, learning the WW is a burdensome process,
requiring days even for datasets containing only a few thousand
series. In this paper, we propose ULTRAFASTWWSEARCH, a new
algorithm able to learn the WW significantly faster than the state-
of-the-art FASTWWSEARCH method. ULTRAFASTWWSEARCH
builds upon the latter, exploiting the properties of a new efficient
exact DTW algorithm which supports early abandoning and
pruning (EAP). We show on 128 datasets from the UCR archive
that ULTRAFASTWWSEARCH is up to an order of magnitude
faster than the previous state of the art.

Index Terms—Time Series, Dynamic Time Warping, Warping
Window, Early Abandoning, Pruning

I. INTRODUCTION

The Dynamic Time Warping (DTW) distance is the go-
to similarity measure for a wide range of time series data
mining tasks, including similarity search [1], classification [2]–
[5], regression [6], clustering [7], [8], and motif discovery [9].
All these tasks rely on nearest neighbour (NN) search, and
it is widely known that NN search is most effective when
DTW is constrained by the right warping window (WW) [2],
[5], [8], [10]. Indeed, the unconstrained DTW is subject to
pathological warping, leading to unintuitive alignments [3]
where a single point of a time series is aligned to a large
section of another series [11].

Traditionally, learning the WW has been a time consuming
leave-one-out cross-validation (LOOCV) process that requires
computing DTW between every pair of training instances,
for each WW [2], [8], [12]. This is only compounded by the
quadratic time complexity of DTW. With a training dataset of
N time series of length L, learning the WW naively requires
O(N2.L3) operations (Section II-C). This is extremely slow,
even for datasets with only a thousand of time series. For
instance, the naive approach took 58 hours to learn the best
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Fig. 1: ULTRAFASTWWSEARCH vs the naive LOOCV ap-
proach, and state-of-the-art FASTWWSEARCH. Total training
time on the 6 largest datasets from [12] in terms of N × L.

WW on the StarLightCurves dataset from the UCR
archive [12], which only has 1,000 training instances with
a length of 1024 (Fig. 1). In comparison, the state-of-the-
art method, FASTWWSEARCH, took 30 minutes, while our
proposed approach took only 4 minutes. Similar improvements
can be seen across all the largest (in terms of N ×L) datasets
from the UCR archive [12], shown in Fig. 1 (note log scale).

The current state-of-the-art FASTWWSEARCH is a sophis-
ticated and intricate algorithm [3], exploiting the properties
of DTW and its various lower bounds to achieve a three
orders of magnitude speedup over the naive approach. Its
significance is demonstrated by FASTWWSEARCH having
received the SDM 2018 best paper award. Even-though FAST-
WWSEARCH achieves 1,000 times speedup compared to the
traditional LOOCV approach, it is still undesirably slow for
large datasets with long time series. This is shown in Fig. 1,
where FASTWWSEARCH took almost 6 hours to train on
the HandOutlines dataset, one of the largest and longest
datasets from the UCR archive [12], compared to just 11
minutes for our proposed method.

Before FASTWWSEARCH, there were two primary strate-
gies for speeding up LOOCV. One was by speeding up the
NN search process, e.g. by using lower bounds to skip most of
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Fig. 2: Pairwise plot comparing ULTRAFASTWWSEARCH to
baseline methods on 128 UCR datasets. FASTWWSEARCH is
the current state of the art [3]. LOOCV is the standard method
used to search for the best warping window [2].

DTW computations [1], [13]–[17]. The other was by speeding
up the core computation of DTW, e.g. by approximating it
[18] or pruning unnecessary operations [19]. But, scalability
remains an issue for large datasets and long series [3], [20].

Recently, Herrmann and Webb [21] developed an effi-
cient implementation strategy for six elastic distances, in-
cluding DTW. This strategy, known as “Early Abandoned
and Pruned” (EAP), relies on an upper bound beyond which
the precise distance is not required. This is used to prune
and early abandon the core computation of elastic distances.
Nearest neighbor search naturally provides such an upper
bound (Section III-A). EAP demonstrated more than an order
of magnitude speedup for several NN-DTW search tasks.

In this paper, we propose ULTRAFASTWWSEARCH, a new
approach to learn the WW for DTW. We fundamentally
transformed the FASTWWSEARCH algorithm proposed in [3]
to exploit the full capacity of EAP [21] and gaining a further
substantial speedup by better exploiting a property called
the window validity. Like FASTWWSEARCH, ULTRAFAST-
WWSEARCH is exact, i.e. produces the same results as the
traditional LOOCV approach. It is, however, always faster –
up to one order of magnitude – than FASTWWSEARCH when
tested on the 128 datasets from the UCR archive [12]. Fig. 2
demonstrates this by comparing ULTRAFASTWWSEARCH to
FASTWWSEARCH and to the traditional LOOCV approach.

Similarly to FASTWWSEARCH, ULTRAFASTWWSEARCH
systematically fills a table recording the nearest neighbor at
each WW for each series in T . However, it does so without
the intricate cascading of DTW lower bounds that is critical
to FASTWWSEARCH. ULTRAFASTWWSEARCH processes a
new time series in a systematic order, minimizing the number
of DTW computations while exploiting the strengths of EAP
to speedup the required ones.. We release our code open-
source1 to ensure reproducibility, and to enable researchers
and practitioners to directly use ULTRAFASTWWSEARCH as
a subroutine to tune DTW whatever their application.

1Source code available at https://github.com/ChangWeiTan/UltraFastWWS

We believe that ULTRAFASTWWSEARCH serves as an
important foundation to further speed up distance-based time
series classification algorithms, such as the “Fast Ensemble of
Elastic Distances” (FastEE) [4], that has fallen from favor due
to its relatively slow compute time.

This paper is organised as follows. In Section II, we
introduce some background and notation used in this work. We
review some related work in Section III. Section IV describes
ULTRAFASTWWSEARCH in detail. Then we evaluate our
method in Section V with the standard methods. Lastly,
Section VI concludes our work with some future directions.

II. BACKGROUND

We consider learning from a dataset T = {T1, · · · , TN} of
N time series where Ti are of length L. The letters S and T
denote two time series, and Ti denotes the ith element of T .

A. Dynamic Time Warping

The DTW distance was first introduced in 1971 by Sakoe
and Chiba [22] as a speech recognition tool. Since then, it
has been one of the most widely used distance measure in
NN search, supporting sub-sequence search [1], regression
[6], clustering [7], [8], motif discovery [9], and classification
[2], [4], [5], Nearest neighbour with DTW (NN-DTW) has
been the historical approach to time series classification. The
“Ensemble of Elastic Distances” (EE) [2], introduced in 2015,
was one of the first classifiers to be consistently more accurate
than NN-DTW over a wide variety of tasks. It relies on eleven
NN classifiers including NN-DTW (and its variant with a
warping window, cDTW, see below). EE opened the door to
“ensemble classifiers”, i.e. classifiers embedding other clas-
sifiers as components, for time series classification. Various
recent and accurate ensemble classifiers such as HIVE-COTE
[23], Proximity Forest [24], and TS-CHIEF [25] also embed
both NN-DTW and NN-cDTW classifiers.
DTW computes in O(L2) the cost of an optimal alignment

between two series (lower costs indicating more similar series)
by minimising the cumulative cost of aligning their individual
points. Equations 1a to 1d define the “cost matrix” M for two
series S and T such that M(i, j) is the minimal cumulative
cost of aligning the first i points of S with the first j points
of T . It follows that DTW(S, T )=M(L,L).

M(0, 0) = 0 (1a)
M(i, 0) = +∞ (1b)
M(0, j) = +∞ (1c)

M(i, j) = d(Si, Tj) + min


M(i−1, j−1)
M(i−1, j)
M(i, j−1)

(1d)

Common functions for the cost of aligning two points are
d(Si, Tj) = |Si, Tj | and d(Si, Tj) = (Si, Tj)

2. In the current
paper we use the latter. However, our algorithms generalize to
any cost function.

https://github.com/ChangWeiTan/UltraFastWWS
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Fig. 3: Alignments associated to the warping path in Fig. 4a

The individual alignments (dotted lines in Fig. 3) form a
“warping path” in the cost matrix (Fig. 4a). See how the
vertical section of the path column 1 in Fig. 4a corresponds
to the first point of T being aligned thrice in Fig. 3.

B. Warping window

DTW is usually associated with a “warping window” (WW)
w (originally called Sakoe-Chiba band), constraining how far
the warping path can deviate from the diagonal of the matrix
[22]. Given a line index 1 ≤ l ≤ L and a column index
1 ≤ c ≤ L, we have |l−c| ≤ w. A WW of 0 is equivalent
to the squared Euclidean distance, and a WW ≥ L−1 is
equivalent to unconstrained (or “full”) DTW. DTW with a
WW is often called cDTW, or simply as DTW annotated with
a window w. In this paper, we focus only on the commonly
used warping window (Sakoe-Chiba band) [2]–[4], [10], [13].
However it is also important to note that there are other types
of constraints for DTW such as the Itakura Parallelogram [26]
and the Ratanamahatana-Keogh band [27].

We can make the following observations.
1) WW have a “validity”: If the warping path at a given

window w deviates from the diagonal by no more that v, then
it will remain the same for all windows v ≤ w′ ≤ w. This is
called window validity, v in [3], and is noted [v, w], i.e. we
say that DTWw(S, T ) has a window validity of [v, w].

2) DTW is monotonic in w: DTWw(S, T ) increases as w
decreases, i.e. DTWw(S, T ) ≥ DTWw+k(S, T ) for k ≥ 1.
In other words, DTWw(S, T ) is a lower bound for all
DTWw′(S, T ) with 0 ≤ w′ < w (see Section III-A).

Fig. 4 illustrates these observations on the cost matrix. The
full DTW (Fig. 4a) has a window validity of [2, L−1], i.e. the
warping path and DTW cost of 23 are the same for all warping
windows from L down to 2 (Fig. 4b). The next WW of 1
actually constraints the warping path, resulting in an increased
DTW cost of 25 (Fig. 4c). Fig. 5 illustrates the consequence
of these observations. The DTW distance is constant for a
large range of windows, and increases when w gets smaller.

C. Learning the optimal warping window

There are two main advantages of learning the optimal
warping window. First, a good window provides better results
(e.g. classification accuracy) with NN search by preventing
spurious alignments [3], [8], [11]. Recent works [3], [5],
[8] demonstrated that DTW is only competitive for clas-
sification when used with an optimized warping window.
Improvements in accuracy as great as from 65% to 93%
have been demonstrated [3]. Second, by reducing the time

TABLE I: Table of NNs for each WW. A cell (i, w) = Tk(d)
means Ti has Tk as its NN for window w with distance d.

Nearest neighbor at warping windows
0 1 · · · L−2 L−1

T1 T24(2.57) T55(0.98) · · · T55(0.98) T55(0.98)
...

...
TN T60(4.04) T47(1.61) · · · T47(1.61) T47(1.61)

complexity down to O(w.L), cDTW can be significantly
faster to compute than DTW, especially for small windows.
The usual approach for discovering the optimal window size
is through leave-one-out cross-validation (LOOCV) [2], [5],
[8], [12] by optimising a performance metric such as training
accuracy. This can be seen as creating a (N × L) table as
shown in Table I, giving the nearest neighbor of every time
series for all windows and finding the column that gives the
best training accuracy. Note that the largest effective window
is L−1 as DTWL =DTWL−1. For simplicity, we use w=L
and w=L−1 interchangeably throughout the paper.

In this paper, we use 1-NN which has been widely used
for benchmarking DTW algorithms [2], [4]. Note that our
ULTRAFASTWWSEARCH can easily be extended to cases
where more than 1 neighbour (k > 1) is desired. This is done
by adding a third dimension, k to Table I and keeping track
of the distance to the k-th nearest neighbour. For simplicity,
we describe our work in this paper using k = 1.

A straightforward LOOCV WW search implementation has
O(N2.L3) time complexity (L2 for each DTW, repeated over
L windows). Due to its L3 complexity, it does not scale
to long series [3]. Note that both FASTWWSEARCH and
ULTRAFASTWWSEARCH primarily tackle the impact of the
L3 part of the complexity, by minimizing the number of times
the O(L2) DTW is computed. For instance, the FordA and
FordB datasets in Fig. 1 have short series, but many of them:
the resulting speedup is limited by the N2 part of the com-
plexity. Fig. 9a and 9b clearly illustrate this. When the length
of the series increases (Fig. 9a), ULTRAFASTWWSEARCH
scales extremely well compared to the state of the art. On
the other hand, when the number of series increases (Fig. 9b),
both methods suffer from the associated quadratic complexity,
although ULTRAFASTWWSEARCH does better.

Discovering the optimal window for DTW is so expensive
(and likewise for the parameters of other elastic distances [2],
[4]) that a recent version of state-of-the-art classifier HIVE-
COTE dropped EE, even though doing so reduced its accuracy
by 0.6% on average across the UCR series archive [12], and
by up to 5% on some datasets [28]. The sole reason for
dropping EE is its computational burden being too great for it
to be considered feasible to employ. In the future, ULTRA-
FASTWWSEARCH may allow to reinstate a more efficient
implementation of EE in HIVE-COTE, providing a substantial
improvement to the state of the art.

III. RELATED WORK

In this section, we review the state-of-the-art methods to
speed up NN-DTW, focusing on LOOCV and learning the
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Alg. 1: NN-DTW search

1 (dnn, Tnn)← (∞, ∅);
2 for T ∈ T do
3 d← DTW(S, T ) ;
4 if d < dnn then (dnn, Tnn)← (d, T ) ;
5 return (dnn, Tnn);

optimal warping window efficiently.

A. Lower Bounding

Filling out the NNs table in Table I can be considered as
finding the nearest neighbor for each time series T within T
at each window size. It follows that one way to speed up
LOOCV is to speed up NN-DTW. A common approach to
speeding up NN-DTW is through “lower bounding” [1], [13]–
[17]. A NN search returns the nearest neighbour Tnn of a query
S among a dataset T , i.e. we have dnn=DTW(S, Tnn) such
that ∀T ∈ T , dnn ≤ DTW(S, T ) (Alg. 1).

It turns out that NN search naturally supports lower bound-
ing (Alg. 2). First, in Alg. 1, notice how dnn is an upper
bound (UB) on the end result: either it is the distance of
the actual nearest neighbour, or it will later be replaced by a
smaller value. A lower bound LB(S, T ) ≤ DTW(S, T ) allows

Alg. 2: Lower bounded NN-DTW search

1 (dnn, Tnn)← (∞, ∅);
2 for T ∈ T do
3 if LB(S, T ) < dnn then
4 d← DTW(S, T ) ;
5 if d < dnn then (dnn, Tnn)← (d, T ) ;
6 return (dnn, Cnn);

a costly DTW computation to be avoided if LB(S, T ) ≥ UB
as LB(S, T ) ≥ UB ` DTW(S, T ) ≥ UB (Alg. 2).

An efficient lower bound must be fast while having good
approximations (“tight”) [13], [14]. Because these aims com-
pete, lower bounds of increasing tightness and cost are used
in cascade, e.g. in the UCR-SUITE [1]. The most common
lower bounds for DTW are LB KIM [17] and LB KEOGH
[13]. The UCR-SUITE [1] is one of the fastest NN search al-
gorithms. It uses 4 optimization techniques: early abandoning,
reordering early abandoning, reversing query and candidate
roles in LB KEOGH and cascading lower bounds (LB KIM
and LB KEOGH) to speed up NN search. Tan et al. [3] shows
that although UCR-SUITE is faster than naive LOOCV, it is
still significantly slower than FASTWWSEARCH.

B. Improving DTW implementation

Speeding up DTW itself also speeds up the whole LOOCV
process. PRUNEDDTW [29] first computes an upper bound
on the result (the Euclidean distance), then skip cells from the
cost matrix M that are larger. It was later extended to use
the upper bound UB compute by the NN search process (dnn
in Alg. 2), allowing early abandoning [19]. These techniques
only yielded a minimal improvement when applied to window
search [3].

Recently, Herrmann and Webb [21] developed the new
“EAP” (Early Abandoned and Pruned) strategy, which tightly
integrating pruning and early abandoning. EAP supports the
fastest known NN-DTW implementations, even reducing the
need for lower bounds. Like any early abandoned distance,
EAP takes an upper bound UB as an extra parameter (again,



dnn in Alg. 2), and abandons the computation as soon as it can
be established that the end result will exceed it. The novelty
of EAP is that early abandoning is treated as an extreme
consequence of pruning: if UB prunes a full line of M , then
no warping path can exist. Note that in Alg. 2, the initial upper
bound is set to ∞, which does not allow to prune anything
when using EAP. By initialising it to the squared Euclidean
distance (i.e. the diagonal of M ), EAP can prune some cells
of M from the start (but not early abandon).

C. FastWWSearch

FASTWWSEARCH [3] is a window optimization algorithm
producing the same results as LOOCV while being sig-
nificantly faster than both traditional LOOCV and UCR-
SUITE. It exploits three important properties of DTW and its
LB KEOGH lower bound: warping windows have a validity
(Section II-B1); DTW is monotonic with w (Section II-B2);
and, like DTW, LB KEOGH is monotonic with w.

FASTWWSEARCH exploits these properties by starting
from the largest warping window, skipping all the windows
where the warping path remains the same. Starting from the
largest warping window has another advantage: the monotonic
property of DTW and LB KEOGH allows LB KEOGHw+k

and DTWw+k, for any k ≥ 1, to be used as lower bounds for
DTWw. In other words, results obtained at larger windows
provide “free” lower bounds for smaller windows.

FASTWWSEARCH was subsequently extended to other
distance measures, creating FastEE [4], a significantly faster
implementation of EE.

IV. ULTRA FAST WARPING WINDOW SEARCH

The core of ULTRAFASTWWSEARCH is built upon FAST-
WWSEARCH [3] with the following key differences: (1) it
replaces all calls to DTW with the EAP variant [21]; (2) it
takes full advantage of EAP’s early abandoning and pruning;
(3) it processes the time series in different orders that best
exploit EAP’s capabilities; and (4) it does not use any lower
bounds. For the rest of the paper, DTW should be understood
as being the EAP variant unless specified otherwise.

ULTRAFASTWWSEARCH takes advantage of the proper-
ties of DTW (Section II-B), ordering the computation from
large to small windows. Similar to FASTWWSEARCH, this
allows ULTRAFASTWWSEARCH to skip the computation of
DTWv≤w′<w(S, T ) for DTWw(S, T ) with a window validity
of [v, w], and to use DTWw results as lower bounds for
smaller window w′′ < v without extra expense. In practice, for
most time series pairs the window validity of DTWL extends
to around 10% of L, i.e. the validity is [ L10 , L], allowing us to
skip many unnecessary computations.

We present ULTRAFASTWWSEARCH as a set of algo-
rithms. They rely on a global cache C indexed by a pair
of series, storing a variety of information. C(S,T ).value
stores the most recent DTW value (i.e. at a larger window);
C(S,T ).validity stores the minimum window size for which
C(S,T ).value is valid. C(S,T ).do_euclidean calculates the

Alg. 3: AssessNN(w, d,UB, S, T )

Input: w: the warping window
Input: d: the distance to beat
Input: UB: the upper bound to early abandon
Input: S, T : the time series to evaluate
Result: DTWw(S, T ) if ≤ d, else abort

1 if C(S,T ).value ≥ d then return abort
2 if w ≥ C(S,T ).valid then return C(S,T ).value
3 else
4 C(S,T ) ← DTWw(S, T,UB)
5 if C(S,T ).value =∞ then C(S,T ).value← UB
6 if C(S,T ).value ≥ d then return abort
7 else return C(S,T ).value

squared Euclidean distance between S and T on demand,
caching the result for future uses.

The ASSESSNN algorithm in Alg. 3 is a function that
assesses whether a given pair of time series (S, T ) is less than
some distance d apart for a warping window, w. ASSESSNN
differs substantially from the FASTWWSEARCH function
on which it is based, LASYASSESSNN, which incorporates
complex management of partially completed lower bound
calculations at varying windows. ASSESSNN uses DTWw+k

computed at a larger window as a lower bound to avoid the
computation of DTWw when possible. Unlike the complex
cascade of lower bounds used in FASTWWSEARCH, this is
the only lower bound used in ULTRAFASTWWSEARCH.

Alg. 3 first checks whether the previously computed DTW
distance, stored in the cache C(S,T ), is larger than the current
best-so-far distance to beat, d. If so, the algorithm terminates
without any extra computation. This is because DTW distance
increases with decreasing w (see Fig. 5), so if a distance at
a larger w′ is already larger than the best-so-far distance d at
w, then so too is DTWw. If not and the previously computed
DTW is still valid, it is returned (line 2). Otherwise, we have
to compute DTWw(S, T ). Notice that on line 4, we make use
of the EAP implementation of DTW, passing the upper bound
UB as an argument. We will describe how UB is calculated in
the following paragraphs. If we do not early abandon, then the
new distance is stored in C(S,T ). Else we store UB in C(S,T )

and terminate the algorithm. Storing UB in C(S,T ) instead of
∞ provides a better ordering of T ∈ T later in the algorithm.

Recall that learning the warping window can be thought
as filling up a (N × L) nearest neighbour table, illustrated
in Table I. Once this table has been filled, we can easily
determine the best warping window for a particular problem
by looking for the column that gives the best performance. In
case of ties, we take the smallest window as it is cheaper to
compute at test time. Alg. 4 describes this process. The result
is identical to FASTWWSEARCH and LOOCV. In general,
Alg. 4 can be transformed to either FASTWWSEARCH and
LOOCV by replacing line 1 with a method to fill the NNs
table. For LOOCV, this is naively filling the table described
in Section II-C and Alg. 3 in [3] for FASTWWSEARCH. We
use Alg. 6 to fill this table efficiently.

Similar to FASTWWSEARCH, we build this table for a
subset T ′ ⊆ T of increasing size until T ′ = T . This method



Alg. 4: ULTRAFASTWWSEARCH

Data: T : training data
Result: w?: best warping window

// Find all nearest neighbors
1 NNs← ULTRAFASTFILLNNTABLE(T )
// Find WW with fewest misclassifications

2 bestNErrors ← |T |+ 1
3 for w ← 0 to L−1 do
4 nErrors ← 0
5 foreach T ∈ T do
6 if NNs[T ][w].class 6= T.class then nErrors++
7 if nErrors < bestNErrors then
8 (bestNErrors, w?) ← (nErrors, w)

Alg. 5: UPDATENN(S, T,NNs, w)

Input: S the query time series
Input: T the candidate time series
Input: NNs the nearest neighbors table
Input: w the current window
Result: NNs updated nearest neighbors table

// Compute the upper bound UB
1 UB← max (NNs[S][w].dist,NNs[T ][w].dist)
2 if UB =∞ then UB ← C(S,T ).do_euclidean

// Check if T is NNs[S][w]
3 toBeat← NNs[S][w].dist
4 if AssessNN(w, toBeat,UB, S, T ) 6= abort then
5 NNs[S][w]← (T, C(S,T ))

// Check if S is NNs[T ][w]
6 toBeatT← NNs[T ][w].dist
7 if AssessNN(w, toBeatT,UB, S, T ) 6= abort then
8 NNs[T ][w]← (S, C(S,T ))

allows us to process all the series in T in a systematic and
efficient order. We start by building the table for T ′ comprising
only 2 first time series T1 and T2, and fill this (2 × L)-table as
if T ′ was the entire dataset. At this stage it is trivial that T2
is the nearest neighbour of T1 and vice versa. We then add a
third time series T3 from T \T ′ to our growing set T ′. At this
point, we have to do two things: (a) find the nearest neighbour
of T3 within T ′ \T3 = {T1, T2} and (b) check whether T3 has
become the nearest neighbor of T1 and/or T2. This is described
in Alg. 5. We can then add a fourth time series T4 and so on
until T ′ = T .

Alg. 5 describes the process to check whether either of a
pair (S, T ) is a nearest neighbour of the other and, if so, to
update the NNs table accordingly. This process differs from
FASTWWSEARCH by using an UB to early abandon and
prune DTW computations, exploiting EAP. It is important to
have a “tight” UB especially for w=L because DTWL is the
most expensive operation for ULTRAFASTWWSEARCH and
thus needs to be minimised. Using EAP alone has provided
a significant boost to the speed of FASTWWSEARCH, which
will be shown in our experiments in Section V.

Lines 1 to 2 of Alg. 5 calculate the upper bound that will
be used to early abandon and prune EAP. The upper bound
is calculated as UB=max(NNs[S][w].dist,NNs[T ][w].dist).
This ensures that we always and only calculate the full DTW
when it can result in S being T ’s NN or vice versa. If we do

not have a best-so-far NN for either S nor T yet, i.e. when T is
the first candidate NN considered for S and hence its distance
is +∞, then we compute ED(S, T ) and use that as the UB for
EAP. ED is an upper bound (UB) for DTW and provides a
better UB than the commonly used +∞ for us to prune EAP
with DTW at the largest window, w=L. Then lines 3 to 5
check whether T can be the NN of S. The algorithm calls the
AssessNN function in Alg. 3 to check whether T is able to
beat (i.e. smaller than) the best-so-far NN distance of S, d.
If AssessNN returns abort, it means that DTWw′(S, T ) ≥ d
for all w′ ≥ w, thus T cannot be the nearest neighbour of
S. Otherwise we update the nearest neighbour of S with T
(line 7). Similarly lines 6 to 8 check whether S is the nearest
neighbour of T . Note that we have compute DTWw(S, T )
once to update both NNs[S][w] and NNs[T ][w].

The core of ULTRAFASTWWSEARCH lies in Alg. 6. In
line 1, we start by initialising the NNs table to ( ,+∞), an
otherwise empty table with +∞ nearest neighbour distances.
Then in line 2 we initialise T ′, the subset of T processed so
far. After initializing the key components, we start with the
second time series in T , and add all the preceding time series
Ts−1 to T ′. We start the computation from the largest window,
w=L−1, described from lines 6 to 12.

Recall that FASTWWSEARCH processes the series at
w=L−1 similarly as any other smaller w. It goes through
the set T ′ in an ascending order of lower bound distance
to S. For the case of w=L−1, T ′ is ordered on LB KIM,
which is a loose lower bound. This exploits its complex
cascade lower bounds in order to minimize the number of
full DTW calculations required by using the lower bounds
to prune as many as possible. In contrast, ULTRAFAST-
WWSEARCH exploits the unique properties of EAP by seek-
ing to minimize the UB used in each call to DTW. Recall that
UB=max(NNs[S][w].dist,NNs[T ][w].dist). NNs[S][w].dist
starts at ∞ and can only decrease with each successive T .
Hence, it is most productive to pair it initially with T s with
larger NNs[T ][w].dist, as the max will be large anyway, and
to pair it with the smallest NNs[T ][w].dist last, when it is also
most likely to be small and hence the max will be small. To
this end we process T ′ in descending order of the NN distance
of each T ∈ T ′ at w=L−1, as outlined in lines 8 to 11.

However, while this sort order is important to minimize
the EAP computations at the full DTW when only loose
lower bounds are possible, DTWw+1(S, T ) provides a very
tight lower bound on DTWw(S, T ). Once it is available it is
advantageous to exploit it. Hence, on line 16, we order T ′
in ascending order of their DTWL−1 distances. Note that we
only do this once for each series S. In practice the order does
not change substantially as the window size decreases. Rather
than resorting at each window size, it is sufficient to just keep
track of the nearest neighbour at w+1, process it first as it
is likely to be one of the nearest neighbors at w, and then
process the remaining series in the DTWL−1 sort order.

In addition, we also keep track of the maximum window
validity, ω for all NNs[T ][L] for all T ∈ T ′. By keeping track
of ω, we can quickly skip all the windows where the distances



Alg. 6: ULTRAFASTFILLNNTABLE(T )

Input: T the set of time series
Result: NNs the nearest neighbors table

1 NNs.fillAll( ,+∞)
2 T ′ ← ∅
3 for s← 2 to N do

// Update NNs wrt adding S
4 S ← Ts
5 T ′ ← T ′ ∪ {Ts−1}

// Start with full DTW
6 ω ← 0 // max window validity
7 w ← L−1 // window for full DTW
8 foreach T ∈ T ′ in des. order of NNs[T ][w].dist do
9 CS,T ← ∅

10 UPDATENN(S, T,NNs, w)
11 ω ← max (ω,NNs[T ][w].valid)
12 ω ← max (ω,NNs[S][w].valid)

// Propagate NN for path validity
13 for w′ ∈ NNs[S][w].valid do
14 NNs[S][w′]← NNs[S][w]
15 foreach T ∈ T ′ if NNs[T ][w] = S do
16 for w′ ∈ NNs[T ][w].valid do

NNs[T ][w′]← NNs[T ][w]

// Sort T ′ in asc order using C once
17 T ′ ← T ′.sort

// remember NN at previous window (w+1)
18 TNNw+1 ← T ′0
19 for w ← ω−1 down to 0 do
20 if NNs[s][w] 6= ∅ then

// Update NNs[T ][w] for T ∈ T ′
21 foreach T ∈ T ′ do
22 toBeat← NNs[T ][w].dist
23 UB← toBeat
24 if UB =∞ then
25 UB← C(S,T ).do_euclidean

26 if AssessNN(w, toBeat,UB, S, T ) 6= abort then
27 NNs[T ][w]← (S, C(S,T ))
28 else

// Start from the NN at w+1
29 UPDATENN(S, TNNw+1 ,NNs, w)

30 foreach T ∈ T ′ \ TNNw+1 do
31 UB← max (NNs[S][w].dist,NNs[T ][w].dist)
32 if UB =∞ then UB ← C(S,T ).do_euclidean
33 toBeat← NNs[S][w].dist

34 if AssessNN(w, toBeat,UB, S, T ) 6= abort then
35 NNs[S][w]← (T, C(S,T ))
36 TNNw+1 ← T

37 toBeatT← NNs[T ][w].dist
38 if AssessNN(w, toBeatT,UB, S, T ) 6= abort then
39 NNs[T ][w]← (S, C(S,T ))

// Propagate NN for path validity
40 for w′ ∈ NNs[S][w].valid do

NNs[S][w′]← NNs[S][w]

are constant for all T ∈ T ′. On line 13, once we have the NN
of S at w=L−1, we need to propagate this information for
all w′, w′ ≤ w for which the warping path is valid. Similarly
in lines 14 and 15, we also need to propagate the NN for all
T ∈ T ′ if NNs[T ][L]=S.

From line 19, we continue to process the windows from
ω−1 down to 0. Line 20 checks if we already have a NN for

S from larger windows due to window validity. Lines 21 to 27
check whether S is the NN of any T ∈ T ′. Since we already
have the NN for S, the process is the similar to lines 6-8 of
Alg. 5, the difference being the way UB was calculated. In
this case, we can use the distance of the current NN of T (if
available) as the UB instead of taking the max of the two NN
distances, as we will not use the result to check whether T
is S’s NN. The process starting from the else case (line 28)
is when we do not obtain the NN of S at w from a larger
window. In this case, we need to search for the NN of S from
T ′. We start from TNNw+1 , the NN of S at w+1. The NN
of both S and TNNw+1 are updated with Alg. 5. The rest of
T ∈ T ′ \ TNNw+1 is processed similar to Alg. 5, except that
we need to keep track of TNNw+1 (lines 31 – 39). Finally we
have NNs[S][w], the NN of S at w, we need to propagate the
information for all valid windows (line 40).

V. EXPERIMENTS

This section describes the experiments to evaluate our
ULTRAFASTWWSEARCH. To ensure reproducibility, we have
made our code and results available open-source at https:
//github.com/ChangWeiTan/UltraFastWWS. Note that ULTRA-
FASTWWSEARCH is exact, producing the same results as
FASTWWSEARCH and LOOCV, hence we are only interested
in comparing the training time.

Our experiments use all of the 128 benchmark UCR time
series datasets [12]. For each method, we perform the search
using the set of 100 warping windows (percentage of the time
series length) used in EE [2] and FastEE [4]. This allows
ULTRAFASTWWSEARCH to be directly used in EE. Note that
23 out of the 128 datasets have a length shorter than 100,
incurring duplicated windows and unnecessary operations.
Since the ordering of the series in the datasets might affect
the training time, i.e. the speed depends on where the actual
nearest neighbour is, we report the average results over 5 runs
for different reshuffles of the training dataset. We conducted
our experiments in Java, on a single core cluster machine with
AMD EPYC Processor CPU @2.2GHz and 32GB RAM.

Our experiments are divided into three parts. (A) We first
study the effect of using EAP on LOOCV. (B) Then we
explore the features of ULTRAFASTWWSEARCH that help
it achieves significant speed up compared to the state of the
art. (C) Lastly, we investigate the scalability of ULTRAFAST-
WWSEARCH on large and long datasets.

A. Pruning and Early Abandoning with EAP

Given the dramatic speedup of EAP on NN-DTW [21],
we first study the feasibility of replacing DTW in LOOCV
with EAP. The following methods are compared:

1) DTW LOOCV: Naive implementation of LOOCV
described in Section II-C using NN-DTW with early
abandoning strategy described in [1] but without lower
bound and UB from Section III-A. The UB is computed
using the best-so-far NN distance.

2) UCR-SUITE LOOCV: Naive implementation of
LOOCV using NN-DTW with optimizations from

https://github.com/ChangWeiTan/UltraFastWWS
https://github.com/ChangWeiTan/UltraFastWWS


UCR-SUITE, i.e. cascading lower bounds and early
abandoning as before [1].

3) EAP LOOCV: Replacing DTW in DTW LOOCV
with EAP [21].

Fig. 6a compares the total training time of the three methods
on the 128 datasets. The results show that EAP LOOCV
reduces the training time of DTW LOOCV by almost
1,000 hours (42 days) and about 300 hours (12 days) for
UCR-SUITE LOOCV. Note that EAP LOOCV was able
to achieve such significant speedup without using any lower
bounds, while UCR-SUITE LOOCV uses a series of complex
lower bounds. The main reason is because the LB KIM and
LB KEOGH lower bounds used in UCR-SUITE are very loose
at larger windows, as pointed out in [14]. The work in [14]
showed that the more complex LB KEOGH can be looser than
the simpler LB KIM when w ≥ 0.5 ·L, This shows that EAP
is able to reduce the need for lower bounds for NN-DTW
especially at larger warping windows.

B. Speeding up the state of the art

This section examines the features that make ULTRA-
FASTWWSEARCH ultra-fast, comparing it to state-of-the-art
FASTWWSEARCH. The results are shown in Fig 6b.

Much of EAP’s speed up in many NN-DTW tasks ac-
tually comes from early abandoning (see Fig. 7 of [21]).
Section V-A showed that EAP, even without using lower
bounds, speeds up the naive LOOCV implementation. Hence,
we created two variants of FASTWWSEARCH, (1) with early
abandoning and (2) without lower bounds to study how they
contribute to speeding up FASTWWSEARCH, annotated with
the suffixes “ EA” and “ NoLb” respectively. We adopt the
early abandoning strategy described in [1] for the original
FASTWWSEARCH and use the UB described in Section III-A
for the early abandoning process.

It is not surprising that removing lower bounds for FAST-
WWSEARCH makes it slower, as it makes use of various lower
bounds to achieve the huge speed up. However, it is interesting
that adding early abandoning to FASTWWSEARCH makes
it the slowest. This is because if DTW is early abandoned
at a larger window, then when FASTWWSEARCH needs the
DTW distance at a smaller window, because it was not fully
computed, FASTWWSEARCH needs to recalcuate DTW from
scratch. Similar behaviour was observed in [3] as well.

On the other hand, the opposite is observed for the
EAP variants. EAP FASTWWSEARCH NoLb in Fig. 6b is
EAP FASTWWSEARCH with the use of lower bounds re-
moved. It shows that removing lower bounds actually improves
EAP FASTWWSEARCH, albeit only by about 20 minutes.
This is not surprising as it coincides with the results from the
EAP paper [21]. This again highlights the effectiveness of
the early abandoning strategy of EAP and the possibility of
removing complex lower bounds.

ULTRAFASTWWSEARCH incorporates six primary strate-
gies that distinguish it from FASTWWSEARCH. We study
the effect of introducing each of these in turn with algo-
rithms EAP FASTWWSEARCH: using EAP for DTW com-

putations; EAP FASTWWSEARCH NoLb: removing lower
bounds; EAP FASTWWSEARCH EA: using early abandon-
ing; ULTRAFASTWWSEARCH V1: tighter upper bounds; UL-
TRAFASTWWSEARCH V2: sorting T ′ in ascending order of
distance to nearest neighbor and then sorting on DTWL; and
ULTRAFASTWWSEARCH: skipping windows from L−1 to ω,
the maximum window validity at L−1.

Fig. 6b shows that substituting EAP to compute
DTW within FASTWWSEARCH (even without early
abandoning) (EAP FASTWWSEARCH) reduces the
total training time for all 128 datasets by 5 hours. 3
hours and 50 minutes of this comes from 5 long and
large datasets, NonInvasiveFetalECGThorax1,
UWaveGestureLibraryAll, HandOutlines, FordA
and FordB. The pairwise plot in Fig. 7 illustrates that
EAP FASTWWSEARCH is consistently faster than the
original DTW variant, although the difference between them
is not large. The result shows that without early abandoning,
EAP is still an efficient strategy that prunes unnecessary
computations in DTW.

The effectiveness of early abandoning an EAP com-
putation depends on the UB that was passed into it.
EAP FASTWWSEARCH EA uses the UB described in Sec-
tion III-A. The V1 variant of ULTRAFASTWWSEARCH uses
the UB described in Alg. 5. The results in Fig. 6b show that
this UB improves the speed of ULTRAFASTWWSEARCH but
by a small margin. Since we calculate UB as the maximum
between the nearest neighbour distances of both S and T , it is
most productive to pair S with T s with larger NNs[T ][w].dist
(Alg. 6). This allows us to better exploit the new UB. This
strategy has shown to speed up FASTWWSEARCH substan-
tially, as demonstrated by the V2 variant of ULTRAFAST-
WWSEARCH in Fig. 6b.

Finally we add the optimization of skipping windows from
L−1 to ω. While the five previous optimizations all exploit
the properties of EAP, this final optimization is a novel
further exploit of the window validity property beyond those
in FASTWWSEARCH. It more than halves the total time.

Fig 6b shows that ULTRAFASTWWSEARCH is able to
complete all 128 datasets in under 4 hours. This is a 6 times
speedup compared to 24 hours for FASTWWSEARCH.

We performed a statistical test using the Wilcoxon signed-
rank test with Holm correction as the post hoc test to the
Friedman test [30] to test the significance of our results and
visualise it in a critical difference diagram, illustrated in Fig. 8.
Fig. 8 shows the average ranking of each method over all
datasets, with a rank of 1 being the fastest and rank 9 being
the slowest. Methods in the same clique (black bars) indicates
that they are not significantly different from each other. Similar
to the results in Fig. 6b, the optimizations for ULTRAFAST-
WWSEARCH significantly slows down FASTWWSEARCH.
The critical difference diagram shows that all the EAP variants
are faster than the original FASTWWSEARCH with significant
consistency across datasets. It is interesting to observe that
although early abandoning reduces the total time on 128
datasets shown in Fig. 6b, it is ranked lower compared to



0 200 400 600 800 1000 1200 1400
Time (H)

UltraFastWWSearch

EAP_LOOCV

UCRSuite_LOOCV

DTW_LOOCV

M
et

ho
ds

3 h 48 mins

169 hours

449 hours

1135 hours

(a)

0 5 10 15 20 25 30 35 40
Time (H)

UltraFastWWSearch
UltraFastWWSearch_V2
UltraFastWWSearch_V1
EAP_FastWWSearch_EA

EAP_FastWWSearch
EAP_FastWWSearch_NoLb

FastWWSearch
FastWWSearch_NoLb

FastWWSearch_EA

M
et

ho
ds

3 h 48 mins

9 h 40 mins

11 h 20 mins

12 h 11 mins

18 h 57 mins

19 h 20 mins

24 h 42 mins

32 h 26 mins

33 h 9 mins

(6 mins)

(20 mins)

(23 mins)

(21 mins)

(21 mins)

(7 mins)

(19 mins)

(70 mins)

(29 mins)

(b)

Fig. 6: Total training time on 128 datasets [12] of (a) LOOCV with DTW and EAP, UCR-SUITE, and our method for
reference; (b) FASTWWSEARCH and ULTRAFASTWWSEARCH and their variants. The numbers in the round brackets represent
the standard deviation over 5 runs.

10 2 10 1 100 101 102 103 104

DTW_FastWWSearch, time (s)

10 2

10 1

100

101

102

103

104

EA
P_

Fa
st

W
W

Se
ar

ch
, t

im
e 

(s
)

DTW_FastWWSearch is faster here (0)

EAP_FastWWSearch is faster here (128)

EAP_FastWWSearch vs DTW_FastWWSearch

Fig. 7: Pairwise comparison on 128 UCR datasets of FAST-
WWSEARCH with EAP FASTWWSEARCH.

123456789

FastWWSearch_EA
FastWWSearch_NoLb

FastWWSearch (Tan et.al.)
EAP_FastWWSearch_EA

EAP_FastWWSearch
EAP_FastWWSearch_NoLb
UltraFastWWSearch_V1
UltraFastWWSearch_V2
UltraFastWWSearch

Fig. 8: Critical difference diagram comparing the training time
of various methods on 128 datasets.

all other methods. The reason being the early abandoning
strategy in EAP reduces the time of three largest datasets
(HandOutlines, FordA, and FordB) by a significant
amount, while the overhead of having to recalculate EAP if
previously early abandoned has greater cost relative to the
computation save by abandoning on smaller datasets. Then
we see that ULTRAFASTWWSEARCH is the fastest among
all with an average rank closed to 1 (i.e. it is faster than all
methods on almost all datasets), followed by its V2 and V1
variants. Fig. 2 shows that ULTRAFASTWWSEARCH is up to
one order of magnitude faster than FASTWWSEARCH.

C. Scalability to large and long datasets

We showed previously that ULTRAFASTWWSEARCH is
efficient on large and long datasets. We now investigate its
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Fig. 9: Training time versus (a) time series length L on
HandOutlines [12], and (b) training set size N on SITS
[31].

scalability. We first experimented using the HandOutlines
dataset with a length of L=2709 – the longest in the UCR
archive [12]. We varied the length from 0.1×L to L, recording
the time to search for the best warping window. Fig. 9a shows
that the training time of ULTRAFASTWWSEARCH increases
slower than FASTWWSEARCH as L increases. With only
L=1000, we are able to achieve 9.4 times speed up, and 30
times at L=2709. This means reducing 6 hours of compute
time down to 11 minutes (Fig. 1), thus effectively tackling the
L3 part of the complexity.

We then evaluated the scalabilty to larger datasets, us-
ing the same SITS dataset as [3], taken from [31]. We
chose this dataset because it has a short length of L=46,
which tends to isolate the influence of N on the scalability.
Fig. 9b shows that ULTRAFASTWWSEARCH is on average
2 times faster than FASTWWSEARCH for all N . This means
that although ULTRAFASTWWSEARCH is faster than FAST-
WWSEARCH, the N2 part of the complexity becomes a
limitation of ULTRAFASTWWSEARCH. However, traditional
methods LOOCV and UCR-SUITE do not even scale on this
dataset as shown in [3], requiring days to complete, while
ULTRAFASTWWSEARCH only takes 6 hours for N=90, 000.



VI. CONCLUSION

This paper proposes an ultra fast algorithm that is able to
learn the warping window for Dynamic Time Warping effi-
ciently. ULTRAFASTWWSEARCH fundamentally transforms
its predecessor FASTWWSEARCH. It incorporates six major
changes – using EAP to compute DTW; removing the use
of DTW lower bounds; adding early abandoning of DTW;
establishing tighter upper bounds for early abandoning; order-
ing the time series so as to best exploit the efficient pruning
and early abandoning power of EAP; and using the window
validity to skip the majority of window sizes altogether.

Our experiments show that it is up to an order of magnitude
faster than the previous state of the art, with the greatest benefit
achieved on long time series datasets, where it is most needed.

ULTRAFASTWWSEARCH speeds up the training of NN-
DTW, formerly one of the slowest time series classification
(TSC) algorithms, to under 4 hours on the UCR datasets, a
time close to ROCKET, one of the fastest and most accurate
TSC algorithms [32]. This holds open the promise for EE to be
reinstated back into HIVE-COTE, which is known to improve
its classification performance to a new state-of-the-art level for
TSC and only omitted due to its excessive compute time [33].
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[30] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[31] C. W. Tan, G. I. Webb, and F. Petitjean, “Indexing and classifying
gigabytes of time series under time warping,” in Proceedings of the
2017 SIAM Int. Conf. Data Mining. SIAM, 2017, pp. 282–290.

[32] A. Dempster, F. Petitjean, and G. I. Webb, “Rocket: exceptionally
fast and accurate time series classification using random convolutional
kernels,” Data Mining and Knowledge Discovery, vol. 34, no. 5, pp.
1454–1495, 2020.

[33] M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bag-
nall, “Hive-cote 2.0: a new meta ensemble for time series classification,”
arXiv preprint arXiv:2104.07551, 2021.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

	Introduction
	Background
	Dynamic Time Warping
	Warping window
	WW have a ``validity''
	DTW is monotonic in w

	 Learning the optimal warping window

	Related Work
	Lower Bounding
	Improving DTW implementation
	FastWWSearch

	Ultra Fast Warping Window Search
	Experiments
	 Pruning and Early Abandoning with EAP
	Speeding up the state of the art
	Scalability to large and long datasets

	Conclusion
	References

