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What is a Time Series?

• Collection of observations made sequentially, more intuitive visually

• Many data can be transformed into time series → Satellite Image Time Series
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Array of numbersSatellite Images Time series

Every pixel represents a geographic area (Lat, Lon) on Earth



Dynamic Time Warping 
• a.k.a. DTW – similarity function to 

align time series 𝑂 𝐿2

• Every possible alignment of 𝑄 and 𝐶 is a 
warping path, Ԧ𝑝

Ԧ𝑝 = 𝑤1, … , 𝑤𝐾

• 𝑤𝑘 = 𝑖, 𝑗 represents an association of 
𝑞𝑖 ↔ 𝑐𝑗 aligned by DTW

• DTW(𝑄, 𝐶) finds the cheapest warping 
path (“best”)

• Used in many fields: Classification, 
Regression, Clustering, … 
• Nearest Neighbour Algorithm (NN-DTW)
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• Warping Window, 𝑤 is a global constraint on the alignment of DTW
such that the elements of 𝑄 and 𝐶 can only be mapped if they are 
less than 𝑤 apart, 𝑤 = {0,… , 𝐿}

Warping Window
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DTW with 𝑤 = 𝐿 DTW with 𝑤 = 3 𝑤 = 3 DTW with 𝑤 = 0

Full DTW Euclidean DistanceWarping windows, 𝑤



Why learn the best warping window? 

• Strong influence on accuracy
• On CinC ECG torso dataset, error 

rate reduced from 35% to 7% 

• NN-DTW with learnt warping 
window performs better

• Speedup DTW  
• Smaller 𝑤 means we don’t need 

to compute the full DTW matrix

• Reduce the complexity down to 
𝑂 𝑤 ⋅ 𝐿
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𝑤 = 0.05 × 𝐿

[1] Tan, C. W., Herrmann, M., Forestier, G., Webb, G. I., & Petitjean, F. (2018, May). Efficient search of the best warping window for dynamic time warping. In Proceedings of 

the 2018 SIAM International Conference on Data Mining (pp. 225-233). Society for Industrial and Applied Mathematics.



How to learn the best warping window? 
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for 𝑤 = 0 to 𝐿 do

𝑒𝑟𝑟𝑜𝑟 = 0

for each 𝑠 in 𝑇 do

𝑛𝑛𝑠 = nn_search 𝑠, 𝑇\s, 𝑤

if 𝑛𝑛𝑠. 𝑐𝑙𝑎𝑠𝑠 ≠ 𝑠. 𝑐𝑙𝑎𝑠𝑠 then 𝑒𝑟𝑟𝑜𝑟++

if 𝑒𝑟𝑟𝑜𝑟 < 𝑏𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟 then

𝑏𝑒𝑠𝑡𝑊𝑊 = 𝑤

𝑏𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟 = 𝑒𝑟𝑟𝑜𝑟

Leave One Out Cross Validation (LOO-CV) 

Parameter to NN-DTW algorithm

Naïvely learns the best warping window 
requires 𝑂 𝑁2𝐿3 operations [1]

[1] Tan, C. W., Herrmann, M., Forestier, G., Webb, G. I., & Petitjean, F. (2018, May). Efficient search of the best warping window for dynamic time warping. In Proceedings of the 2018 

SIAM International Conference on Data Mining (pp. 225-233). Society for Industrial and Applied Mathematics.



Fast Warping Window Search
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• Efficiently fill up a NN table, giving the nearest neighbour of every time series for all windows

• Naïvely create the table using DTW, requires 𝜃 𝑁2𝐿3 operations
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Prior approaches typically go from smallest to largest with a subset of windows

FastWWS goes from largest to smallest, fast enough to test all windows



FastWWS Intuition

Warping path can be valid for several 
windows

• 𝑤 has a “validity”

• skip computations of all valid 𝑤

• Example:
• Warping path is valid to 𝑤 = 6

• DTW24 𝑄, 𝐶 = DTW6 𝑄, 𝐶

• Skip all DTW from 𝑤 = 24,… , 6
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𝐰 … 4 5 6 7 … 23 24

DTW𝐰 𝐐,𝐂 … 8.82 8.36 8.04 8.04 … 8.04 8.04



FastWWS Intuition

• FastWWS goes from largest to smallest, applies to all or a subset of windows
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• Large window validity for DTW𝐿

(Most of the time)
• No bounds are necessary 
• DTW has not changed

Thus obtain DTW𝑤+𝑘 and/or LB_Keogh𝑤+𝑘
for “FREE” as the lower bound for DTW𝑤

DTW𝑤 𝑄, 𝐶 ≥ DTW𝑤+1 𝑄, 𝐶

LB_Keogh𝑤 𝑄, 𝐶 ≥ LB_Keogh𝑤+1 𝑄, 𝐶 ≥ LB_Kim 𝑄, 𝐶

Tighter bounds for pruning

Only use the value at 𝑤 + 𝑘 when available, no 
point in computing DTW𝑤+𝑘 for DTW𝑤
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Average speed up
On the 𝑁2 Term
𝑁 ≤ 200 ⇒ 106x
𝑵 > 𝟐𝟎𝟎 ⇒ 𝟏84x

On the 𝐿3 Term
𝐿 ≤ 300 ⇒ 67x
𝑳 > 𝟑𝟎𝟎 ⇒ 250x

FastWWS is FASTER and more EFFICIENT than previous methods!



FastWWS is still slow
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Ultra Fast Warping Window Search for DTW

• Built upon FastWWSearch

• Inspired by EAP-DTW [1] to speed up FastWWSearch

• 6 primary strategies
1. Replaces DTW with a more efficient EAP-DTW

2. Uses early abandoning of EAP-DTW

3. Establishes tighter upper bound for EAP-DTW

4. Ordering the time series to best exploit the efficient pruning and early 
abandoning power of EAP-DTW

5. Removes DTW lower bounds, which 1-4 render redundant

6. Using the window validity to skip most window sizes altogether
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[1] Herrmann, M., Webb, G.I. Early abandoning and pruning for elastic distances including dynamic time warping. Data Min Knowl Disc 35, 2577–2601 (2021).



Early Abandoning and Pruning
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Original DTW cost matrix
81 computations

Early abandoned DTW cost matrix
23 computations

cut-off = 1

Pruned DTW cost matrix
57 computations

cut-off = 5



Tighter Upper Bounds for EAP-DTW

• Minimise 𝐷𝑇𝑊𝐿 - the most expensive operation of UltraFastWWS

UB = ቐ
max(NN𝑤

𝑄
, NN𝑤

𝐶 ) , NN𝑤
𝑄
and NN𝑤

𝐶 is computed

EuclideanDistance 𝑄, 𝐶 , NN𝑤
𝑄
and NN𝑤

𝐶 not computed
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ensures that we always and only calculate 
the actual 𝐷𝑇𝑊 when we need to

Euclidean Distance is a better upper bound for 
𝐷𝑇𝑊 than the commonly used ∞. 

It corresponds to the parameter 𝑤 = 0, that 
gives the largest distance between 𝑄, 𝐶



Filling the NN table
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𝑤 0 1 2 3 4 5 … 𝐿 − 3 𝐿 − 2 𝐿 − 1

𝑇1 𝑇3(2.21) 𝑇3(1.89) 𝑇2(1.57) 𝑇2(1.35) 𝑇2(1.22) 𝑇2(0.98) 𝑇2(0.98) 𝑇2(0.98) 𝑇2(0.98) 𝑇2(0.98)

𝑇2 𝑇5(2.78) 𝑇5(2.54) 𝑇5(2.35) 𝑇5(2.14) 𝑇5(1.92) 𝑇5(1.92) 𝑇5(1.92) 𝑇5(1.92) 𝑇5(1.92) 𝑇5(1.92)

𝑇3 𝑇4(1.15) 𝑇4(1.01) 𝑇4(0.81) 𝑇4(0.59) 𝑇4(0.34) 𝑇4(0.19) 𝑇4(0.19) 𝑇4(0.19) 𝑇4(0.19) 𝑇4(0.19)

𝑇4 𝑇2(1.09) 𝑇2(0.99) 𝑇2(0.76) 𝑇2(0.56) 𝑇2(0.56) 𝑇2(0.56) 𝑇2(0.56) 𝑇2(0.56) 𝑇2(0.56) 𝑇2(0.56)

𝑇5 𝑇1(2.51) 𝑇1(2.46) 𝑇1(2.37) 𝑇1(2.21) 𝑇3(1.83) 𝑇3(1.83) 𝑇3(1.83) 𝑇3(1.83) 𝑇3(1.83) 𝑇3(1.83)

𝑆

1. Process in 
descending 

order

3. Process in 
ascending 

order

4. Keep track of the candidate 
with the smallest NN distance at 

𝑤 + 1
and start 𝑤 from this candidate

2. Skip to the 
maximum 
window 
validity

Specific ordering to exploit efficient pruning and early abandoning power of EAP-DTW
• Minimize the upper bound used in each call to 𝐷𝑇𝑊
• More productive to initially pair with 𝑇𝑇 with large NN distance



Experimental Evaluation

• Evaluate the efficiency of UltraFastWWS
1. LOOCV with DTW

2. LOOCV with EAP-DTW

3. LOOCV with UCR Suite

4. FastWWS with DTW

5. FastWWS with EAP-DTW

• Exhaustive search over 101 window sizes on all methods

• Average results over 5 runs for different reshuffling of 𝑇

• 128 benchmark time series datasets
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🚀



Speeding up State of the Art
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With lower bounds

Without lower bounds



Ablation Study
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Tighter upper bounds

With the specific sort order

With early abandoning

Without lower bounds

Replace DTW with EAP-DTW



Scalability to large and long datasets
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Conclusion and Future work

• An exact algorithm to speedup the search for the best parameter 
(warping window) for NN-DTW
• UltraFastWWS is more EFFICIENT and FASTER
• UltraFastWWS completes the training on all 128 datasets within 4 hours, a 

time comparable to one of the most scalable TSC algorithm (ROCKET [1])

• Improve scalability and accuracy of Ensemble of Elastic Distances  

• Our results and source code are online at 
• https://github.com/ChangWeiTan/UltraFastWWS
• Slides: https://changweitan.com/research/ICDM21-slides.pdf
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[1] Dempster, A., Petitjean, F., & Webb, G. I. (2020). ROCKET: exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and 
Knowledge Discovery, 34(5), 1454-1495.

https://github.com/ChangWeiTan/UltraFastWWS
http://changweitan.com/research/ICDM21-slides.pdf
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Thank you!
Questions and Answers 

chang.tan@monash.edu github.com/ChangWeiTan/UltraFastWWS

CW. Tan M. Herrmann G.I. Webb


