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▪ Reset track geometry by rearranging the ballast particles

Tamping Maintenance
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Motivation

▪ Historical data shows that it is not always effective

▪ Ineffective tamping reduces tracks’ life-cycle
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What can we do?

▪ Predict Tamping Effectiveness

▪ A recent work calculates tamping effectiveness using ratio 

of average responses before and after tamping. 

▪ Challenging problem due to many complex phenomena 

▪ Important for 3 reasons

1. Minimise maintenance cost and time

2. Reduce unplanned downtime

3. Avoid cost of failure recovery
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Predict if tamping will be effective 
for a track location
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How to do it?

1. Data pre-processing & filtering

– Convert acquired data from Instrumented 

Revenue Vehicles (IRVs) into time series for 

each track location

2. Train a classifier

– k-Nearest Neighbours

– Classification tree

– Naïve Bayes

3. Evaluate and cross-validate the performance 

of the classifier

4. Predict tamping effectiveness

Data Pre-
Processing & 

Filtering

Train and 
Evaluate the 

Classifier

Prediction of 
Tamping 

Effectiveness
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1. Data – Instrumented Revenue Vehicles (IRVs)

▪ Continuous monitoring system that uses measured wagon’s dynamic 

activity to infer information about track condition

▪ Installed on normal revenue wagons

– Cheap

– Do not affect normal operations

▪ Measures:

– Speed

– Axle Load

– Suspension 

– In Train Forces
Image taken from UniversalMechanism

http://www.universalmechanism.com/en/news/news.php?id=108
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1. Data – IRVs Time Series
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1. Data – IRVs Time Series

▪ Multivariate sensor data from IRVs collected between February to July 2016

▪ Multiple trips form a 4 dimensional time series for each track location

▪ Filters

– Locations without tamping

– Locations with less than 30 trips

▪ Pre-process

– Linearly interpolate missing data 

– Label each location with tamping effectiveness

▪ Effective and Ineffective

▪ Resample data to days with the average of the day
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1. Data – Instrumented Revenue Vehicles Time Series
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2. Train a classifier

▪ Supervised machine learning

– Train a classifier using labelled data

– Training time

▪ Learn the characteristics of the data using 

labelled data

– Testing time

▪ Label a query object using the learnt 

characteristics from the training data

▪ Time series classification

– k-Nearest Neighbour (k-NN) Classifier 
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2. Train a classifier - Time series classification (TSC)

▪ Many algorithms that uses static features

– Naïve Bayes 

– Classification Trees 

▪ In most applications, features changes

▪ “Incorrect” to classify by observing only the static features

▪ k-NN is a better alternative
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2. Train a classifier - k-NN Classifier

▪ State-of-the-art for time series 

classification

– Performed the best over a wide range of 

time series dataset

▪ Outperforms others with large database 

size

▪ Search for the kth most similar objects 

(time series)

▪ Labels the query using the majority label 

of the kth nearest neighbours

▪ Uses a similarity measure 
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2. Train a classifier – Comparing time series (Euclidean Distance, ED)

▪ Calculate a distance between the two time series

▪ Simplest distance measure is Euclidean 

Distance (ED)

ED 𝑥, 𝑦 = ෍

𝑖=1

𝑑

𝑥𝑖 − 𝑦𝑖
2

▪ Euclidean distance cannot handle distortions in 

time axis, different length

▪ Time series are often shifted in time (distortions) 

with different length
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2. Train a classifier - Comparing time series (Dynamic Time Warping, DTW)

▪ Robust to time axis distortions and can handle 

different length

▪ Find alignment between two time series

▪ Given two time series X and Y of length n and m,

DTW 𝑋, 𝑌 = ED 𝑥1, 𝑦1 +min

DTW Tail 𝑋 , Tail 𝑌

DTW Tail 𝑋 , 𝑌

DTW 𝑋, Tail 𝑌

▪ Tail 𝑋 = 𝑥2, 𝑥3, … , 𝑥𝑛
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2. Train a classifier - Dynamic Time Warping (DTW)

▪ Dynamic Programming

▪ Constructs n×m cost matrix D and find a 

warping path (red) that minimises the 

alignment cost of the two time series

D 𝑖, 𝑗 = ED 𝑥𝑖 , 𝑦𝑗 +min

D 𝑖 − 1, 𝑗 − 1

D i − 1, 𝑗

D 𝑖, 𝑗 − 1

DTW 𝑋, 𝑌 = D 𝑛,𝑚
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2. Train a classifier - Classifiers

▪ k-Nearest Neighbour (k-NN)

– State of the art and widely used in many TSC applications

– Simple and effective algorithm that does not require training

– Labels query by finding the kth most similar time series

▪ Classification Tree (CART)

– Build a decision tree to classify the query based on some rules (features)

▪ Naïve Bayes

– Classifies the query based on the posterior of each class observed from 

the features of training database
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3. Evaluation and Validation

▪ Binary classification

▪ Compute performance metric for both effective and ineffective tamping

– Accuracy, A =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

– Precision, P =
𝑇𝑃

𝑇𝑃+𝐹𝑃

– Sensitivity, S =
𝑇𝑃

𝑇𝑃+𝐹𝑁

– F1 Score, F1 = 2 ⋅
𝑃⋅𝑆

𝑃+𝑆

▪ 10-fold cross validation

– Split and validate the training database
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4. Tamping effectiveness prediction with k-NN

List for K-NN

Updates the list if 
nearest than the 
furthest distance

Majority class
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A. Classifiers comparison

B. Early prediction of tamping effectiveness
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Results – Classifiers comparison

▪ Show that the state-of-the-art, k-NN works well even for 

multivariate time series in predicting tamping effectiveness

▪ Compare with Naïve Bayes and Classification Tree

– k = 1,3,5,7,9,11,13 for k-NN

– 6 statistical features, Mean, Standard Deviation, Skewness, 

Kurtosis, Maximum and Minimum for Naïve Bayes and 

Classification Tree.
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Results – Classifiers comparison • 11-NN has highest accuracy than other two
• 11-NN has highest precision in predicting both 

effective and ineffective tamp than other two
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Results – Classifiers comparison
• 11-NN has higher Sensitivity in predicting both 

effective and ineffective tamp than other two
• 11-NN has higher F1 Score in predicting both effective 

and ineffective tamp than other two
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Results – Early Prediction of Tamping Effectiveness

▪ Predict tamping effectiveness as early as possible, typically 12 weeks

▪ The earlier we know about the effectiveness, the better the 

maintenance can be planned.

▪ Procedure

1. Truncate the existing time series by the number of days before tamping

2. Predict the tamping effectiveness of the query location with 11-NN-DTW

3. Repeat with days ranging from 0 to 84 days (12 weeks)
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Results – Early Prediction of Tamping Effectiveness

72%

66%

68%, Predicting 
tamping effectiveness 

12 weeks (84 days) 
ahead
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Conclusion

▪ Present a tamping effectiveness prediction system using k-NN-DTW.

▪ Showed that 11-NN-DTW gives good prediction.

▪ The system is able to give good prediction 12 weeks before tamping.

▪ Significance

– Improve efficiency of railway track maintenance

– Can be used with other maintenance procedures

▪ Future work

– Optimise with more data

– Predicting an actual response
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