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* Reset track geometry by rearranging the ballast particles
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* 30-40% of the tamping maintenance are shown to be ineffective
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Ineffective tamping reduces tracks’ life-cycle

Tamping Effectiveness
W Highly Effective
i Slightly Effective
M Slightly Ineffective
W Highly Ineffective
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* Predict Tamping Effectiveness

* Arecent work calculates tamping effectiveness using ratio of average
responses before and after tamping.
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* Challenging problem due to many complex phenomena
— Weather
— Soil properties

* Important for 3 reasons

1. Minimise maintenance cost and time q G a
2. Reduce unplanned downtime l) D D
3. Avoid cost of failure recovery d (\! by
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Predict if tamping will be effective
for a track location




Data pre-processing & filtering

— Convert acquired data from Instrumented
Revenue Vehicles (IRVs) into time series for each

track location
Train a classifier

— k-Nearest Neighbours

— Classification tree
— Naive Bayes

Evaluate and cross-validate the performance

of the classifier

Predict tamping effectiveness

IrT) Institute of
ailway Technology
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How to do it?
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Historical data of
a track location

Machine
Learning System
(Classifier)

Tamping
effectiveness of
a location
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e Continuous monitoring system that uses measured wagon’s dynamic
activity to infer information about track condition

* Installed on normal revenue wagons

— Cheap

— Do not affect normal operations
* Measures:

— Speed

— Axle Load

— In Train Forces

— Spring Nest Deflection (SND)
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1. Data — IRVs Time Series IHHA 2017 §%8)
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* 6 months multivariate sensor data from IRVs
* Multiple trips form a 4 dimensional time series for each track location

* Filters
— Locations without tamping
— Locations with less than 30 trips

* Pre-process
— Linearly interpolate missing data
— Label each location with tamping effectiveness
» Effective and Ineffective

 Resample data to days with the average of the day
12
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1. Data — IRVs Time Series =it
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2. Train a Classifier
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* Supervised machine learning
— Train a classifier using labelled data

— Training time
* Learn the characteristics of the labelled CERAT SN A
. . LT T SR e
data - RUTINESE P
o TS SR
— Testing time KT SO T P I
06 ‘_:: :‘ s am -.'l:'; - 1! .“
* Label a query object using the learnt O AR
.:.:-:-. * ". L4 . f
Sl 5 :‘-." I

characteristics from the training data

 Time series classification i
— k-Nearest Neighbour (k-NN) Classifier w%
Lk Hello
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e State-of-the-art for time series classification
— Performed the best over a wide range of time

series dataset . o . < .
* Simple and effective algorithm that does not .. .:--:.. .8,
require training SR

 OQutperforms others with large database size
« Search for the k* most similar objects (time

series) |
i P KRS Query is
* Labels the query using the majority label of SRE ed of blue
the k™ nearest neighbours © e e

e Uses a similarity measure
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Calculate a distance between the two time
series

Simplest distance measure is Euclidean
Distance (ED)

d 4 py \//_’- ]
ED(x,y) = Z(xi — ¥i)?
\ i=1
Euclidean distance cannot handle distortions \ /
in time axis, different length y

Time series are often shifted in time
(distortions) with different length
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e Robust to time axis distortions and can handle
different length

* Find alignment between two time series
* Given two time series X and Y of length n and m

DTW(Tail(X), Tail(Y))
DTW(X,Y) = ED(x4,y;) + min| DTW(Tail(X),Y)
DTW(X, Tail(Y))

o Tail(X) = {xy, x3, ..., x,,}

17




HIRT Institute of Advancing the Railway Industry through

Railway Technology Technology for over 45 Years
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* Dynamic Programming

Cost matrix, D

e Constructs nxm cost matrix D and find a
warping path (red) that minimises the
alignment cost of the two time series

D(i,j) = ED(x;,y;) + min{ D(@i—1,j) gasas
D(i’j - 1) 00 5 10 15 20 25 30

DTW(X,Y) = D(n,m)
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2. Train a Classifier - Classifiers

e Classification Tree (CART)

— Build a decision tree to classify the query based on some rules (features)
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Skew/(LP4) < 0.0145
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* Naive Bayes

— Classifies the query based on the posterior of each class observed from the
features of training database

— Given a set of features, what is the probability of tamping being Effective
effective/ineffective?
_ priorxlikelihood Oor
posterior= :
evidence
Ineffective

P(eff)p(u | eff)p(a? | eff) - p(min | eff)
P(eff)p(u | eff) --- + P(ineff)p(u | ineff) -

posterior(eff)=

20
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3. Evaluation and Validation

02 - 06 Seplember 2017

* Binary classification
 Compute performance metric for both effective and ineffective tamping

TP+TN
— Accuracy, A = TP+FP+TN+FN Actual\Predict Effective tamping | Ineffective tamping
Effective tamping | 'True positive (TP) False negative (FN)
—  Precision, P = TPTfFP Inffective tamping | False positive (FP) True negative (TN)
e TP
— Sensitivity, S = o _
TP+FN 1 e s &0 %o o °
| o @ i o o oo GD ° o
p.S 2% Tegtset °. % 9 % DD o o 7, 9 60 © o k
— F,Score F1=2_ 88 X% ®5° o ° ® o e v
1 ’ P+S o X% o 4 o? o ? a Ch 0 Dan”
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e 10-fold cross validation Bol 507, e e “Training 8gf ,  ° o °g°
¥ Q o
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— Split and validate the training database R e — :
41 95 75
Sample index
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Algorithm 11: ¢ = predict_effectiveness(Q, D)

© o N DU ke W N e

[y
=]

Input: Q: Query time series
Input: D: Training dataset

Output: ¢: Tamping effectiveness . '
knn = O ; ¢ List for k-NN =27
knn.distance = oo R
for all C € D do IR
d=DTW(Q,C) R
if d < maz(knn.distance) then Update the list if
remove the furthest neighbour from knn nearest than the
fnn.add(C, d) furthest distance
end
end
return ¢ =mode(knn.class) * Majority class

22
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sults

A. Selecting the best classifier
B. Early prediction of tamping effectiveness

23
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Results — Selecting the Best Classifier |HHA 2017 @
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e State-of-the-art k-NN works well for univariate time series

e Show that k-NN works well even for multivariate time series in
predicting tamping effectiveness

 Compare with Naive Bayes and Classification Tree
— k=1,3,5,7,9,11,13 for k-NN
— 6 statistical features

* Mean, Standard Deviation, Skewness, Kurtosis, Maximum and
Minimum for Naive Bayes and Classification Tree.

24
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Results — Selecting the Best Classifier IHHA 2017 §%8)
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* 11-NN has highest accuracy than other two
* 11-NN has highest precision in predicting both effective and ineffective tamp than other two
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Results — Selecting the Best Classifier

Sensitivity
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11-NN has higher Sensitivity in predicting both effective and ineffective tamp than other two
11-NN has higher F; Score in predicting both effective and ineffective tamp than other two

Sensitivity™\

TMN-DTVY

SNM-DTWY

SNN-DTWY

r
|

TIM-DTWY
GNN-DTW

Classifiers

ffective Tamping
neffective Tamping

13NN-DTVY
Maive Bayes

Classification Tree

F1 Score

0.8

071

06

051

04r

03

nzr

01r

IHHA 2017 198)

CAPE TOWN

02 - 06 Seplember 2017 E

THN-DTWY

JNN-DTWY

Classifiers

ffective Tamping
neffective Tamping

13MMN-DTVY

Maive Bayes

Classification Tree

26




HIRT Institute of Advancing the Railway Industry through

Railway Technology Technology for over 45 Years

Results — Selecting the Best Classifier (Why k-NN) JHHA207%@E

CAPE TOWN EEEETE

* Many algorithms uses static features
— Naive Bayes
— Classification Trees
* In most applications, features change over time
* “Incorrect” to classify by observing only the static features
* k-NN will not be affected

* Select k-NN for the prediction

27
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* Predict tamping effectiveness as early as possible, typically 12 weeks
* The earlier we know about the effectiveness, the better the maintenance
can be planned.

* Procedure
1. Truncate the existing time series by the number of days before tamping
2. Predict the tamping effectiveness of the query location with 11-NN-DTW
3. Repeat with days ranging from 0 to 84 days (12 weeks)

28
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Results — Early Prediction of Tamping Effectiveness

Accuracy
T T
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Linearfit
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68%, Predicting
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66% Days before tamping
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* Present a tamping effectiveness prediction system using k-NN-DTW.
 Showed that 11-NN-DTW gives good prediction.
 The system is able to give good prediction 12 weeks before tamping.
e Significance

— Improve efficiency of railway track maintenance

— Can be used with other maintenance procedures

e Future work
— Optimise with more data
— Predicting an actual response

— Other features and classifiers
30
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