
Efficient Search of the
Best Warping Window for

Dynamic Time Warping

2018 SIAM International Conference on DATA MINING

3 May 2018

CW. Tan M. Herrmann G. Forestier G.I. Webb F. Petitjean

What is a Time Series?

• Collection of observations made sequentially, more intuitive visually

• Many data can be transformed into time series → Satellite Image Time Series

2

0.348,0.245,0.142,0.183,0.203,
0.224,0.252,0.204,0.216,0.229,
0.241,0.177,0.211,0.254,0.360,
0.487,0.614,0.669,0.738,0.788,
0.815,0.807,0.817,0.817,0.821,
0.825,0.810,0.796,0.783,0.777,
0.685,0.667,0.591,0.566,0.467,
0.368,0.335,0.301,0.268,0.234,
0.238,0.233,0.262,0.261,0.247,
0.233

Array of numbersSatellite Images Time series

Every pixel represents a geographic area (Lat, Lon) on Earth

Dynamic Time Warping

Euclidean Distance
One-to-one alignment

Dynamic Time Warping
Nonlinear alignment

• a.k.a. DTW – similarity function to align time series 𝑂 𝐿2

• Nearest Neighbour Algorithm (NN-DTW) – Hard to beat [1]

• Used in many fields: Finance, Engineering, Speech Recognition, …

3
[1] Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2017). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and
Knowledge Discovery, 31(3), 606-660..

Dynamic Time Warping

• Aligns two time series 𝑄 and 𝐶 using Dynamic Programming
• Build a cost matrix and solve:

𝐷𝑄,𝐶 𝑖, 𝑗 = 𝛿 𝑞𝑖 , 𝑐𝑗 +min൞

𝐷𝑄,𝐶 𝑖 − 1, 𝑗 − 1

𝐷𝑄,𝐶 𝑖 − 1, 𝑗

𝐷𝑄,𝐶 𝑖, 𝑗 − 1

• where 𝛿 𝑞𝑖 , 𝑐𝑗 = 𝐿𝑝−norm

DTW 𝑄, 𝐶 = 𝐷𝑄,𝐶 𝑚, 𝑛

1
𝑝

4

Dynamic Time Warping

• Every possible alignment of 𝑄 and 𝐶 is a warping path, Ԧ𝑝
Ԧ𝑝 = 𝑤1, … , 𝑤𝐾

• 𝑤𝑘 = 𝑖, 𝑗 represents an association of 𝑞𝑖 ↔ 𝑐𝑗 aligned by DTW

• DTW(𝑄, 𝐶) finds the cheapest warping path (“best”)

5

• Warping Window, 𝑤 is a global constraint on the alignment of DTW
such that the elements of 𝑄 and 𝐶 can only be mapped if they are
less than 𝑤 apart, 𝑤 = {0,… , 𝐿}

Warping Window

6

DTW with 𝑤 = 𝐿 DTW with 𝑤 = 3 𝑤 = 3 DTW with 𝑤 = 0

Full DTW Euclidean DistanceWarping windows, 𝑤

Why learn the best warping window?

• Strong influence on accuracy
• On CinC ECG torso dataset, error

rate reduced from 35% to 7%

• Outperforms all existing time
series classification (TSC)
methods
• State of the art – COTE and EE

learn the best warping window for
DTW

• Speedup DTW
• Smaller 𝑤 means we don’t need

to compute the full DTW matrix

7
Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2017). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and
Knowledge Discovery, 31(3), 606-660..

𝑤 = 0.05 × 𝐿

How to learn the best warping window?

8

for 𝑤 = 0 to 𝐿 do

𝑒𝑟𝑟𝑜𝑟 = 0

for each 𝑠 in 𝑇 do

𝑛𝑛𝑠 = nn_search 𝑠, 𝑇\s, 𝑤

if 𝑛𝑛𝑠. 𝑐𝑙𝑎𝑠𝑠 ≠ 𝑠. 𝑐𝑙𝑎𝑠𝑠 then 𝑒𝑟𝑟𝑜𝑟++

if 𝑒𝑟𝑟𝑜𝑟 < 𝑏𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟 then

𝑏𝑒𝑠𝑡𝑊𝑊 = 𝑤

𝑏𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟 = 𝑒𝑟𝑟𝑜𝑟

Leave One Out Cross Validation (LOO-CV)
Can be any NN-DTW algorithm

Parameter to NN-DTW algorithm

Nearest Neighbour – DTW Search

• Naïve DTW Search

𝑏𝑒𝑠𝑡𝐷𝑖𝑠𝑡 = ∞

for each 𝑐 in 𝑇 do

𝑑𝑡𝑤𝐷𝑖𝑠𝑡 = 𝐷𝑇𝑊(𝑞, 𝑐, 𝑤)

if 𝑑𝑡𝑤𝐷𝑖𝑠𝑡 < 𝑏𝑒𝑠𝑡𝐷𝑖𝑠𝑡 then

𝑏𝑒𝑠𝑡𝐷𝑖𝑠𝑡 = 𝑑𝑡𝑤𝐷𝑖𝑠𝑡

𝑛𝑛𝐼𝑛𝑑𝑒𝑥 = 𝑐. 𝑖𝑛𝑑𝑒𝑥

• Lower Bound DTW Search

𝑏𝑒𝑠𝑡𝐷𝑖𝑠𝑡 = ∞

for each 𝑐 in 𝑇 do

𝑙𝑏𝐷𝑖𝑠𝑡 = 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 𝑞, 𝑐, 𝑤

if 𝑙𝑏𝐷𝑖𝑠𝑡 < 𝑏𝑒𝑠𝑡𝐷𝑖𝑠𝑡 then

𝑑𝑡𝑤𝐷𝑖𝑠𝑡 = 𝐷𝑇𝑊(𝑞, 𝑐, 𝑤)

if 𝑑𝑡𝑤𝐷𝑖𝑠𝑡 < 𝑏𝑒𝑠𝑡𝐷𝑖𝑠𝑡 then

𝑏𝑒𝑠𝑡𝐷𝑖𝑠𝑡 = 𝑑𝑡𝑤𝐷𝑖𝑠𝑡

𝑛𝑛𝐼𝑛𝑑𝑒𝑥 = 𝑐. 𝑖𝑛𝑑𝑒𝑥

9

LB Kim
LB Keogh

[1] Kim, S. W., Park, S., & Chu, W. W. (2001). An index-based approach for similarity search supporting time warping in large sequence databases. In Data Engineering, 2001.

Proceedings. 17th International Conference on (pp. 607-614). IEEE.

[2] Keogh, E., & Ratanamahatana, C. A. (2005). Exact indexing of dynamic time warping. Knowledge and information systems, 7(3), 358-386.

DTW Lower Bounds

• LB Kim

LB_Kim 𝑄, 𝐶 = max

|𝑞1 − 𝑐1|
|𝑞𝐿 − 𝑐𝐿|

|𝑞max − 𝑐max|
|𝑞min − 𝑐min|

• LB Keogh

LB_Keogh𝑤 𝑄, 𝐶 =෍

𝑖=1

𝐿

൞
𝑞𝑖 − 𝑈𝑖

2, if 𝑞𝑖 > 𝑈𝑖
𝑞𝑖 − 𝐿𝑖

2, if 𝑞𝑖 < 𝐿𝑖
0, otherwise

10

Keogh, E., & Ratanamahatana, C. A. (2005). Exact indexing of dynamic time

warping. Knowledge and information systems, 7(3), 358-386.

Kim, S. W., Park, S., & Chu, W. W. (2001). An index-based approach for similarity search

supporting time warping in large sequence databases. In Data Engineering, 2001.

Proceedings. 17th International Conference on (pp. 607-614). IEEE.

Reversing Query/Candidate in LB Keogh

Envelope on Q
LB_Keogh𝑤 𝑄, 𝐶

Envelope on C
LB_Keogh𝑤 𝐶, 𝑄

11

• max LB_Keogh𝑤 𝑄, 𝐶 , LB_Keogh𝑤 𝐶, 𝑄

• Increase tightness of LB Keogh
• Envelopes can be pre-computed
• We will show how we utilised all these “tricks” in our algorithm

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., ... & Keogh, E. (2012, August). Searching and mining trillions of time series subsequences under

dynamic time warping. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 262-270). ACM.

12

Naïve approach learns the best warping window requires 𝜃 𝑁2𝐿3 operations

Efficiently Search for the Best Warping Window of Any Time Series Dataset

Satellite Image Time Series
𝑁 = 1,000,000

𝐿 = 46

Our method

Related Methods
• UCR Suite

• Improve efficiency of NN-DTW by
minimising DTW computations

• 4 optimisation techniques
• Early abandoning Z-Normalisation

• Reordering early abandoning

• Reversing query and candidate in LB
Keogh

• Cascading lower bounds

• Did not use to learn warping
window but can be repurposed for
this task

• Pruned DTW
• Improve efficiency of DTW

• Compute an upper bound to
minimise the computations by
skipping the cells of the cost
matrix that are larger

• Uses the DTW value with smaller
𝒘 as the upper bound to prune
DTW with larger 𝑤

• Improvement for warping window
search is minimal

13

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., ... &

Keogh, E. (2012, August). Searching and mining trillions of time series subsequences

under dynamic time warping. In Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 262-270). ACM.

Silva, D. F., & Batista, G. E. (2016, June). Speeding up all-pairwise dynamic time

warping matrix calculation. In Proceedings of the 2016 SIAM International Conference on

Data Mining (pp. 837-845). Society for Industrial and Applied Mathematics.

Fast Warping Window Search for DTW

• a.k.a. FastWWS - An exact method
• LazyAssessNN

• FastFillNNTable

• Use links between different values of the loops

14

for 𝑤 = 0 to 𝐿 do

𝑒𝑟𝑟𝑜𝑟 = 0
for each 𝑠 in 𝑇 do

𝑛𝑛𝑠 = nn_search 𝑠, 𝑇\s, 𝑤
if 𝑛𝑛𝑠. 𝑐𝑙𝑎𝑠𝑠 ≠ 𝑠. 𝑐𝑙𝑎𝑠𝑠 then 𝑒𝑟𝑟𝑜𝑟++

if 𝑒𝑟𝑟𝑜𝑟 < 𝑏𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟 then

𝑏𝑒𝑠𝑡𝑊𝑊 = 𝑤
𝑏𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟 = 𝑒𝑟𝑟𝑜𝑟

All optimisation in the
literature occurs here

These loops are
independent

(1) For each warping
window, 𝑤

(2) Find the nearest
neighbour 𝑛𝑛 of each
time series 𝑠 in 𝑇\s

Properties for FastWWS

1. Warping path can be valid for several
windows

• 𝑤 has a “validity”

• skip computations of all valid 𝑤

• Example:
• Warping path is valid to 𝑤 = 6

• DTW24 𝑄, 𝐶 = DTW6 𝑄, 𝐶

• Skip all DTW from 𝑤 = 24,… , 6

15

𝐰 … 4 5 6 7 … 23 24

DTW𝐰 𝐐,𝐂 … 8.82 8.36 8.04 8.04 … 8.04 8.04

Properties for FastWWS

1. Warping path can be valid for several windows

16Full DTW, 𝑤 = 24 𝑤 = 6 𝑤 = 5

X
X

Properties for FastWWS

2. DTW is monotone with warping window

• DTW𝑤 𝑄, 𝐶 ≤ DTW𝑤−1 𝑄, 𝐶

3. LB Keogh is monotone with warping window

• LB_Keogh𝑤 𝑄, 𝐶 ≤ LB_Keogh𝑤−1 𝑄, 𝐶

17

New Lower Bounds to prune Nearest Neighbours before computing DTW𝒘 𝑸, 𝑪

DTW𝑤 𝑄, 𝐶 ≥ DTW𝑤+1 𝑄, 𝐶

LB_Keogh𝑤 𝑄, 𝐶 ≥ LB_Keogh𝑤+1 𝑄, 𝐶 ≥ LB_Kim 𝑄, 𝐶

FastWWS Intuition

• Efficiently fill up a NN table, giving the nearest neighbour of every time series for all windows

• Naïvely create the table using DTW, requires 𝜃 𝑁2𝐿3 operations

18

Prior approaches typically go from smallest to largest with a subset of windows

FastWWS goes from largest to smallest, fast enough to test all windows

FastWWS Intuition

• FastWWS goes from largest to smallest, applies to all or a subset of windows

19

• Large window validity for DTW𝐿

(Most of the time)
• No bounds are necessary
• DTW has not changed

Thus obtain DTW𝑤+𝑘 and/or LB_Keogh𝑤+𝑘
for “FREE” as the lower bound for DTW𝑤

DTW𝑤 𝑄, 𝐶 ≥ DTW𝑤+1 𝑄, 𝐶

LB_Keogh𝑤 𝑄, 𝐶 ≥ LB_Keogh𝑤+1 𝑄, 𝐶 ≥ LB_Kim 𝑄, 𝐶

Tighter bounds for pruning

Only use the value at 𝑤 + 𝑘 when available, no
point in computing DTW𝑤+𝑘 for DTW𝑤

FastWWS Intuition

• FastWWS goes from largest to smallest, applies to all or a subset of windows

20

1. If we find the nearest neighbour for a
time series at window, 𝑤 = 𝐿 and the
warping path is valid to 𝑤 = 0, then
we only need to do 1 DTW
computation

2. When we calculate DTW𝑤 𝑄, 𝐶 , even
if candidate 𝐶 is not the nearest
neighbour of 𝑄, we do not need to
recompute DTW𝑤′ 𝑄, 𝐶 for all
windows 𝑤′ that are valid

Lazy Nearest Neighbour Assessment

• Assess if a pair of time series 𝑄, 𝐶 , can be less than distance 𝑑 for
window 𝑤

• Postpones calculations for as long as possible
1. First prune with lower bounds from larger window

2. Try lower bounds of increasing complexity until
a. A LB𝑤 𝑄, 𝐶 > 𝑑

b. Calculated DTW𝑤 𝑄, 𝐶

• When 𝑤 decreases, any value previously calculated for a larger
window becomes a lower bound for current 𝑤, stored in a Cache,
𝒞 𝑄,𝐶

21

LB Kim
LB Keogh

𝐃𝐓𝐖𝒘+𝟏

𝐋𝐁_𝐊𝐞𝐨𝐠𝐡𝒘+𝟏

LazyAssessNN Algorithm

22

if cache𝑄,𝐶is empty do cache𝑄,𝐶 = LB_Kim 𝑄, 𝐶

if cache𝑄,𝐶 . stoppedAt == DTW𝑤+𝑘 and 𝑤 is valid then

if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByDTW else return cache𝑄,𝐶 . value

if cache𝑄,𝐶 . stoppedAt == LB_Kim or LB_Keogh𝑤+𝑘 then

if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByLB

cache𝑄,𝐶 = LB_Keogh𝑤 𝑄, 𝐶 if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByLB

cache𝑄,𝐶 = LB_Keogh𝑤 𝐶, 𝑄 if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByLB

cache𝑄,𝐶 = DTW𝑤 𝐶, 𝑄 if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByDTW

return cache𝑄,𝐶 . value

1. First do LB Kim if hasn’t been done

LazyAssessNN Algorithm

23

if cache𝑄,𝐶is empty do cache𝑄,𝐶 = LB_Kim 𝑄, 𝐶

if cache𝑄,𝐶 . stoppedAt == DTW𝑤+𝑘 and 𝑤 is valid then

if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByDTW else return cache𝑄,𝐶 . value

if cache𝑄,𝐶 . stoppedAt == LB_Kim or LB_Keogh𝑤+𝑘 then

if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByLB

cache𝑄,𝐶 = LB_Keogh𝑤 𝑄, 𝐶 if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByLB

cache𝑄,𝐶 = LB_Keogh𝑤 𝐶, 𝑄 if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByLB

cache𝑄,𝐶 = DTW𝑤 𝐶, 𝑄 if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByDTW

return cache𝑄,𝐶 . value

DTW and LB Keogh from larger
window (property 2 & 3)

2. Check lower bounds
from previous window

LazyAssessNN Algorithm

24

if cache𝑄,𝐶is empty do cache𝑄,𝐶 = LB_Kim 𝑄, 𝐶

if cache𝑄,𝐶 . stoppedAt == DTW𝑤+𝑘 and 𝑤 is valid then

if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByDTW else return cache𝑄,𝐶 . value

if cache𝑄,𝐶 . stoppedAt == LB_Kim or LB_Keogh𝑤+𝑘 then

if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByLB

cache𝑄,𝐶 = LB_Keogh𝑤 𝑄, 𝐶 if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByLB

cache𝑄,𝐶 = LB_Keogh𝑤 𝐶, 𝑄 if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByLB

cache𝑄,𝐶 = DTW𝑤 𝐶, 𝑄 if cache𝑄,𝐶 . value ≥ 𝑑 return prunedByDTW

return cache𝑄,𝐶 . value

3. Use DTW from previous window (𝑤 + 𝑘) if
current window 𝑤 still valid (property 1)

4. If current window 𝑤
is not valid

• Next call to LazyAssessNN will be with a smaller 𝑤

• Possible to use Early Abandon on LB_Keogh and LB_Improved [1]
[1] Lemire, D. (2009). Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern recognition, 42(9), 2169-2180.

Fast Fill the Nearest Neighbour Table

25

NN. fillAll _ ,∞ ∀ 𝑤,𝑁
for 𝑠 ← 2 to 𝑁 do

for w ← 𝐿 − 1 down to 0 do

if NN𝑤
𝑇𝑠 ≠ ∅ then

for t ← 1 to 𝑠 − 1 do

res = 𝐋𝐚𝐳𝐲𝐀𝐬𝐬𝐞𝐬𝐬𝐍𝐍 𝑇𝑠, 𝑇𝑡 , 𝑤, NN𝑤
𝑇𝑠 if res not pruned then NN𝑤

𝑇𝑠 = 𝑇𝑡 , res
else

for t ← 1 to 𝑠 − 1 do

res = 𝐋𝐚𝐳𝐲𝐀𝐬𝐬𝐞𝐬𝐬𝐍𝐍 𝑇𝑠, 𝑇𝑡 , 𝑤, NN𝑤
𝑇𝑠 if res not pruned then NN𝑤

𝑇𝑠 = 𝑇𝑡 , res

res = 𝐋𝐚𝐳𝐲𝐀𝐬𝐬𝐞𝐬𝐬𝐍𝐍 𝑇𝑠, 𝑇𝑡 , 𝑤, NN𝑤
𝑇𝑡 if res not pruned then NN𝑤

𝑇𝑡 = 𝑇𝑠, res

for w′ ∈ NN𝑤
𝑇𝑠 . valid do NN𝑤′

𝑇𝑠 = NN𝑤
𝑇𝑠

Start with second series

Start from largest window

a. Check if NN for 𝑇𝑠 exist at this window

a. Update NN for all previous series

b. Find NN for current series

c. Check if current series 𝑇𝑠 is NN for previous series

Initialise NN table with ∞ NN distance

d. Propagate NN for all valid windows

Fast Fill the Nearest Neighbour Table

• Build table for a subset 𝑇′ ⊆ 𝑇 of increasing size until 𝑇′ = 𝑇

1. Start with 2 time series 𝑇′ = 𝑇1, 𝑇2 and fill the table as if 𝑇′ is the
entire dataset, starting from 𝑤 = 𝐿 − 1 to w = 0
• 𝑇2 is the nearest neighbour of 𝑇1 and vice versa

2. Add a third time series 𝑇3 from 𝑇\T′ to 𝑇′, 𝑇′ = 𝑇1, 𝑇2, 𝑇3
a. Check if nearest neighbour exists for 𝑇3
b. Find the nearest neighbour of 𝑇3 within 𝑇′\T3 = 𝑇1, 𝑇2
c. Check if 𝑇3 is the nearest neighbour of 𝑇1 and/or 𝑇2
d. Propagate nearest neighbour of 𝑇3 for all valid windows

3. Repeat step 2 with the next time series, 𝑇𝑛 in 𝑇\T′ until 𝑇′ = 𝑇

26

FastWWS Example
• Let 𝑇 be a training dataset of 4 time series, 𝑇 = 𝑇1, 𝑇2, 𝑇3, 𝑇4
• Length of each time series is 𝐿 = 24

27

𝑇1 𝑇2 𝑇4𝑇3

FastWWS Example

1. Initialise Cache & NN Table with ∞ NN distance, NN. fillAll _ ,∞ ∀ 𝑤,𝑁

2. Start with 𝑇′ = 𝑇1, 𝑇2 , 𝑤 = 23, 𝑑NN = ∞ and Query: 𝑇2, Candidate: 𝑇1
• 𝐋𝐚𝐳𝐲𝐀𝐬𝐬𝐞𝐬𝐬𝐍𝐍 𝑇1, 𝑇2, 23,∞ :

• cache𝑇1,𝑇2 = LB_Kim 𝑇1, 𝑇2 = 0.040 < ∞ continue

• Compute cache𝑇1,𝑇2 = LB_Keogh23 𝑇1, 𝑇2 = 0.000 < ∞ continue

• Compute cache𝑇1,𝑇2 = LB_Keogh23 𝑇2, 𝑇1 = 0.046 < ∞ continue

• Compute cache𝑇1,𝑇2 = DTW23 𝑇1, 𝑇2 = validTill = 5, 4.254 < ∞ return cache𝑇1,𝑇2 . value

• Assign 𝑇1 as the Nearest Neighbour for 𝑇2 at 𝑤 = 23 and vice versa for 𝑇1
• Propagate Nearest Neighbour of 𝑇2 at 𝑤 = 23 for 𝑤 = 22 to 5

28

𝐰 0 1 2 3 4 5 … 22 23

𝑇1 ∞ ∞ ∞ ∞ ∞ ∞ … ∞ 𝑇2(5, 4.254)

𝑇2 ∞ ∞ ∞ ∞ ∞ 𝑇1(5, 4.254) … 𝑇1(5, 4.254) 𝑇1(5, 4.254)

Reference: NN𝑤
𝑇𝑠(window validity, 𝑑NN)

Propagate NN𝑤
𝑇2

across 𝑤 = 22 to 5

Cache StoppedAt Value

cache𝑇1,𝑇2 LB_Kim 0.040

Precompute LB Kim

FastWWS Example

3. Continue with 𝑤 = 22, 𝑑NN = 4.254 and Query: 𝑇2, Candidate: 𝑇1
• Since we have NN for 𝑇2 at 𝑤 = 22, we have to check if 𝑇2 is NN of 𝑇1
• 𝐋𝐚𝐳𝐲𝐀𝐬𝐬𝐞𝐬𝐬𝐍𝐍 𝑇1, 𝑇2, 22,∞ :

• cache𝑇1,𝑇2 . stoppedAt == DTW23 and 𝑤 = 22 is valid

• cache𝑇1,𝑇2 . value = 4.254 < ∞ return cache𝑇1,𝑇2 . value

• Assign 𝑇2 as the Nearest Neighbour for 𝑇1 at 𝑤 = 22

4. Repeat step 3 for all windows, 𝑤 ∈ 21,… , 5

29

𝐰 0 1 2 3 4 5 … 22 23

𝑇1 ∞ ∞ ∞ ∞ ∞ 𝑇2(5, 4.254) … 𝑇2(5, 4.254) 𝑇2(5, 4.254)

𝑇2 ∞ ∞ ∞ ∞ ∞ 𝑇1(5, 4.254) … 𝑇1(5, 4.254) 𝑇1(5, 4.254)

𝑤 = 22 is still valid
∴ DTW22 𝑇1, 𝑇2
= DTW23 𝑇1, 𝑇2
= 4.254

Cache StoppedAt Value

cache𝑇1,𝑇2 DTW23 4.254

Reference: NN𝑤
𝑇𝑠(window validity, 𝑑NN)

Update cache every time
we compute a distance

FastWWS Example

5. Continue with 𝑤 = 4, 𝑑NN = ∞ and Query: 𝑇2, Candidate: 𝑇1
• 𝐋𝐚𝐳𝐲𝐀𝐬𝐬𝐞𝐬𝐬𝐍𝐍 𝑇1, 𝑇2, 4,∞ :

• cache𝑇1,𝑇2 . stoppedAt == DTW5 and 𝑤 = 4 is not valid

• cache𝑇1,𝑇2 . value = 4.254 < ∞ continue

• Compute cache𝑇1,𝑇2 = LB_Keogh4 𝑇1, 𝑇2 = 0.000 < ∞ continue

• Compute cache𝑇1,𝑇2 = LB_Keogh4 𝑇2, 𝑇1 = 2.076 < ∞ continue

• Compute cache𝑇1,𝑇2 = DTW4 𝑇1, 𝑇2 = validTill = 4, 4.814 < ∞ return cache𝑇1,𝑇2 . value

• Assign 𝑇1 as the Nearest Neighbour for 𝑇2 at 𝑤 = 4 and vice versa for 𝑇1

6. Repeat step 5 for all windows, 𝑤 ∈ 3,… , 0

30

𝐰 0 1 2 3 4 5 … 22 23

𝑇1 𝑇2(0, 11.89) 𝑇2(1, 8.972) 𝑇2(2, 7.341) 𝑇2(3, 6.243) 𝑇2(4, 4.814) 𝑇2(5, 4.254) … 𝑇2(5, 4.254) 𝑇2(5, 4.254)

𝑇2 𝑇1(0, 11.89) 𝑇1(1, 8.972) 𝑇1(2, 7.341) 𝑇1(3, 6.243) 𝑇1(4, 4.814) 𝑇1(5, 4.254) … 𝑇1(5, 4.254) 𝑇1(5, 4.254)

Cache StoppedAt Value

cache𝑇1,𝑇2 DTW5 4.254

𝑤 = 4 is not valid, recompute
DTW if necessary

Cannot propagate NN as
window is only valid for 𝑤 = 4

Reference: NN𝑤
𝑇𝑠(window validity, 𝑑NN)

FastWWS Example

7. Add 𝑇3, 𝑇′ = 𝑇1, 𝑇2, 𝑇3
• cache𝑇1,𝑇3 = LB_Kim 𝑇1, 𝑇3 = 0.361 < ∞

• cache𝑇2,𝑇3 = LB_Kim 𝑇2, 𝑇3 = 0.317 < ∞

• Since LB_Kim 𝑇2, 𝑇3 < LB_Kim 𝑇1, 𝑇3 , start with 𝑇2, 𝑇3 pair

31

𝐰 0 1 2 3 4 5 … 22 23

𝑇1 𝑇2(0, 11.89) 𝑇2(1, 8.972) 𝑇2(2, 7.341) 𝑇2(3, 6.243) 𝑇2(4, 4.814) 𝑇2(5, 4.254) … 𝑇2(5, 4.254) 𝑇2(5, 4.254)

𝑇2 𝑇1(0, 11.89) 𝑇1(1, 8.972) 𝑇1(2, 7.341) 𝑇1(3, 6.243) 𝑇1(4, 4.814) 𝑇1(5, 4.254) … 𝑇1(5, 4.254) 𝑇1(5, 4.254)

𝑇3 ∞ ∞ ∞ ∞ ∞ ∞ … ∞ ∞

Cache StoppedAt Value

cache𝑇1,𝑇2 DTW0 11.89

cache𝑇1,𝑇3 LB_Kim 0.361

cache𝑇2,𝑇3 LB_Kim 0.317

When adding a new
series, initialise the
row to ∞ - meaning
no NN candidate yet

Reference: NN𝑤
𝑇𝑠(window validity, 𝑑NN)

FastWWS Example

8. For 𝑇2, 𝑇3, 𝑤 = 23, 𝑑NN = ∞ and Query: 𝑇3, Candidate: 𝑇2
• 𝐋𝐚𝐳𝐲𝐀𝐬𝐬𝐞𝐬𝐬𝐍𝐍 𝑇2, 𝑇3, 23,∞ :

• cache𝑇2,𝑇3 . value = 0.317 < ∞ continue

• Compute cache𝑇2,𝑇3 = LB_Keogh23 𝑇2, 𝑇3 = 0.000 < ∞ continue

• Compute cache𝑇2,𝑇3 = LB_Keogh23 𝑇2, 𝑇3 = 0.000 < ∞ continue

• Compute cache𝑇2,𝑇3 = DTW23 𝑇2, 𝑇3 = validTill = 4, 1.612 < ∞ return cache. value

• Assign 𝑇2 as the Nearest Neighbour for 𝑇3 at 𝑤 = 23

• Since DTW23 𝑇2, 𝑇3 = 1.612 < DTW23 𝑇1, 𝑇2 = 4.254, Update 𝑇3 as the Nearest Neighbour for 𝑇2 at 𝑤 = 23

32

𝐰 0 1 2 3 4 5 … 22 23

𝑇1 𝑇2(0, 11.89) 𝑇2(1, 8.972) 𝑇2(2, 7.341) 𝑇2(3, 6.243) 𝑇2(4, 4.814) 𝑇2(5, 4.254) … 𝑇2(5, 4.254) 𝑇2(5, 4.254)

𝑇2 𝑇1(0, 11.89) 𝑇1(1, 8.972) 𝑇1(2, 7.341) 𝑇1(3, 6.243) 𝑇1(4, 4.814) 𝑇1(5, 4.254) … 𝑇1(5, 4.254) 𝑇3(4, 1.612)

𝑇3 ∞ ∞ ∞ ∞ ∞ ∞ … ∞ 𝑇2(4, 1.612)

Cache StoppedAt Value

cache𝑇1,𝑇2 DTW0 11.89

cache𝑇1,𝑇3 LB_Kim 0.361

cache𝑇2,𝑇3 LB_Kim 0.317
Reference: NN𝑤

𝑇𝑠(window validity, 𝑑NN)

Nearest Neighbour for 𝑇3 is 𝑇2

DTW23 𝑇2, 𝑇3 = 1.612 < 4.254

Update NN23
𝑇2 = 𝑇3

FastWWS Example

9. For 𝑇1, 𝑇3 ,𝑑NN = 1.612, DTW23 𝑇1, 𝑇2 = 4.254 and Query: 𝑇3, Candidate: 𝑇1
• 𝐋𝐚𝐳𝐲𝐀𝐬𝐬𝐞𝐬𝐬𝐍𝐍 𝑇1, 𝑇3, 23,1.612 :

• cache𝑇1,𝑇3 . value = 0.361 < 1.612 continue

• Compute cache𝑇1,𝑇3 = LB_Keogh23 𝑇1, 𝑇3 = 0.000 < 1.612 continue

• Compute cache𝑇1,𝑇3 = LB_Keogh23 𝑇1, 𝑇3 = 0.039 < 1.612 continue

• Compute cache𝑇1,𝑇3 = DTW23 𝑇1, 𝑇3 = validTill = 2, 3.326 ≥ 1.612 return prunedByDTW

• No change to Nearest Neighbour for 𝑇3 at 𝑤 = 23

• Since DTW23 𝑇1, 𝑇3 = 3.326 < DTW23 𝑇1, 𝑇2 = 4.254, Update 𝑇3 as the Nearest Neighbour for 𝑇1 at 𝑤 = 23

33

𝐰 0 1 2 3 4 5 … 22 23

𝑇1 𝑇2(0, 11.89) 𝑇2(1, 8.972) 𝑇2(2, 7.341) 𝑇2(3, 6.243) 𝑇2(4, 4.814) 𝑇2(5, 4.254) … 𝑇2(5, 4.254) 𝑇3(2, 3.326)

𝑇2 𝑇1(0, 11.89) 𝑇1(1, 8.972) 𝑇1(2, 7.341) 𝑇1(3, 6.243) 𝑇1(4, 4.814) 𝑇1(5, 4.254) … 𝑇1(5, 4.254) 𝑇3(4, 1.612)

𝑇3 ∞ ∞ ∞ ∞ ∞ ∞ … ∞ 𝑇2(4, 1.612)

Cache StoppedAt Value

cache𝑇1,𝑇2 DTW0 11.89

cache𝑇1,𝑇3 LB_Kim 0.361

cache𝑇2,𝑇3 DTW23 1.612

DTW23 𝑇1, 𝑇3 = 3.326 ≥ 1.612

No change to NN23
𝑇3

DTW23 𝑇1, 𝑇3 = 3.326 < 4.254

Update NN23
𝑇1 = 𝑇3

Reference: NN𝑤
𝑇𝑠(window validity, 𝑑NN)

FastWWS Example

10. Now we are sure about NN23
𝑇1 , NN23

𝑇2 and NN23
𝑇3

• We can update NN for 𝑇1, 𝑇2, 𝑇3 for 𝑤 = 22 to 4 since NN23
𝑇3 is valid until 𝑤 = 4

• NN23
𝑇1 is valid until 𝑤 = 2 and will be updated later when we move on to 𝑤 = 2

• Since DTW23 𝑇2, 𝑇3 = 1.612 < DTW23 𝑇1, 𝑇3 = 3.326, start with 𝑇2, 𝑇3 pair for 𝑤 = 3

• DTW4 𝑇1, 𝑇3 = DTW23 𝑇1, 𝑇3
• DTW4 𝑇2, 𝑇3 = DTW23 𝑇2, 𝑇3

34

𝐰 0 1 2 3 4 5 … 22 23

𝑇1 𝑇2(0, 11.89) 𝑇2(1, 8.972) 𝑇2(2, 7.341) 𝑇2(3, 6.243) 𝑇3(2, 3.326) 𝑇3(2, 3.326) … 𝑇3(2, 3.326) 𝑇3(2, 3.326)

𝑇2 𝑇1(0, 11.89) 𝑇1(1, 8.972) 𝑇1(2, 7.341) 𝑇1(3, 6.243) 𝑇3(4, 1.612) 𝑇3(4, 1.612) … 𝑇3(4, 1.612) 𝑇3(4, 1.612)

𝑇3 ∞ ∞ ∞ ∞ 𝑇2(4, 1.612) 𝑇2(4, 1.612) … 𝑇2(4, 1.612) 𝑇2(4, 1.612)

Cache StoppedAt Value

cache𝑇1,𝑇2 DTW0 11.89

cache𝑇1,𝑇3 DTW23 3.326

cache𝑇2,𝑇3 DTW23 1.612

Propagate NN𝑤
𝑇3 and

update NN𝑤
𝑇1, NN𝑤

𝑇2 across
𝑤 = 22 to 4

Reference: NN𝑤
𝑇𝑠(window validity, 𝑑NN)

FastWWS Example

11. For 𝑇2, 𝑇3 continue with 𝑤 = 3, 𝑑NN = ∞ and Query: 𝑇3, Candidates: 𝑇2
• 𝐋𝐚𝐳𝐲𝐀𝐬𝐬𝐞𝐬𝐬𝐍𝐍 𝑇2, 𝑇3, 3,∞ :

• cache𝑇2,𝑇3 . stoppedAt == DTW4 and 𝑤 = 3 is not valid
• cache𝑇2,𝑇3 = 1.612 < ∞ continue

• Compute cache𝑇2,𝑇3 = LB_Keogh3 𝑇2, 𝑇3 = 0.421 < ∞ continue

• Compute cache𝑇2,𝑇3 = LB_Keogh3 𝑇3, 𝑇2 = 0.328 < ∞ continue

• Compute cache𝑇2,𝑇3 = DTW3 𝑇2, 𝑇3 = validTill = 3, 1.614 < ∞ return cache. value
• Assign 𝑇2 as the Nearest Neighbour for 𝑇3 at 𝑤 = 3
• Since DTW3 𝑇2, 𝑇3 = 1.614 < DTW3 𝑇1, 𝑇2 = 6.243, Update 𝑇3 as the Nearest Neighbour for 𝑇2 at 𝑤 = 3

12. Repeat the algorithm for all windows, 𝑤 ∈ 2,… , 0
35

𝐰 0 1 2 3 4 5 … 22 23

𝑇1 𝑇3(0, 4.911) 𝑇3(1, 3.486) 𝑇3(2, 3.326) 𝑇3(2, 3.326) 𝑇3(2, 3.326) 𝑇3(2, 3.326) … 𝑇3(2, 3.326) 𝑇3(2, 3.326)

𝑇2 𝑇3(0, 4.395) 𝑇3(1, 2.598) 𝑇3(2, 1.882) 𝑇3(3, 1.614) 𝑇3(4, 1.612) 𝑇3(4, 1.612) … 𝑇3(4, 1.612) 𝑇3(4, 1.612)

𝑇3 𝑇2(0, 4.395) 𝑇2(1, 2.598) 𝑇2(2, 1.882) 𝑇2(3, 1.614) 𝑇2(4, 1.612) 𝑇2(4, 1.612) … 𝑇2(4, 1.612) 𝑇2(4, 1.612)

Cache StoppedAt Value

cache𝑇1,𝑇2 DTW0 11.89

cache𝑇1,𝑇3 DTW4 3.326

cache𝑇2,𝑇3 DTW4 1.612

𝑤 = 3 is not valid,
recompute DTW if

necessary

Reference: NN𝑤
𝑇𝑠(window validity, 𝑑NN)

FastWWS Example

13. Continue adding 𝑇4 to 𝑇′ and repeat previous steps until 𝑇′ = 𝑇 = 𝑇1, 𝑇2, 𝑇3, 𝑇4

36

𝐰 0 1 2 3 4 5 … 22 23

𝑇1 𝑇3(0, 4.911) 𝑇3(1, 3.486) 𝑇3(2, 3.326) 𝑇3(2, 3.326) 𝑇3(2, 3.326) 𝑇3(2, 3.326) … 𝑇3(2, 3.326) 𝑇3(2, 3.326)

𝑇2 𝑇4(0, 1.658) 𝑇4(1, 0.632) 𝑇4(2, 0.620) 𝑇4(3, 0.599) 𝑇4(3, 0.599) 𝑇4(3, 0.599) … 𝑇4(3, 0.599) 𝑇4(3, 0.599)

𝑇3 𝑇2(0, 4.395) 𝑇2(1, 2.598) 𝑇2(2, 1.882) 𝑇2(3, 1.614) 𝑇2(4, 1.612) 𝑇2(4, 1.612) … 𝑇2(4, 1.612) 𝑇2(4, 1.612)

𝑇4 𝑇2(0, 1.658) 𝑇2(1, 0.632) 𝑇2(2, 0.620) 𝑇2(3, 0.599) 𝑇2(3, 0.599) 𝑇2(3, 0.599) … 𝑇2(3, 0.599) 𝑇2(3, 0.599)

Reference: NN𝑤
𝑇𝑠(window validity, 𝑑NN)

FastWWS Example

14. Classify every instance for each window in one pass of the table

• Yields the best window at 𝒘 = 𝟎 with LOO-CV accuracy of 0.75

37

𝐰 0 1 2 3 4 5 … 22 23

𝑇1 𝑇3 𝑇3 𝑇3 𝑇3 𝑇3 𝑇3 … 𝑇3 𝑇3

𝑇2 𝑇4 𝑇4 𝑇4 𝑇4 𝑇4 𝑇4 … 𝑇4 𝑇4

𝑇3 𝑇2 𝑇2 𝑇2 𝑇2 𝑇2 𝑇2 … 𝑇2 𝑇2

𝑇4 𝑇2 𝑇2 𝑇2 𝑇2 𝑇2 𝑇2 … 𝑇2 𝑇2
Acc 0.75 0.75 0.75 0.75 0.75 0.75 … 0.75 0.75

Experimental Evaluation

• Evaluate the efficiency of FastWWS
• LOO-CV with NN Search

1. DTW with LB Keogh (Baseline)

2. UCR Suite

3. Pruned DTW with LB Keogh

4. UCR Suite with Pruned DTW

• LOO-CV with FastWWS

• Exhaustive search on all methods

• Average results over 10 runs for different reshuffling of 𝑇

• 85 benchmark time series datasets

38

for 𝑤 = 0 to 𝐿 do

𝑒𝑟𝑟𝑜𝑟 = 0
for each 𝑠 in 𝑇 do

𝑛𝑛𝑠 = nn_search 𝑠, 𝑇\s, 𝑤
if 𝑛𝑛𝑠 . 𝑐𝑙𝑎𝑠𝑠 ≠ 𝑠. 𝑐𝑙𝑎𝑠𝑠 then 𝑒𝑟𝑟𝑜𝑟++

if 𝑒𝑟𝑟𝑜𝑟 < 𝑏𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟 then

𝑏𝑒𝑠𝑡𝑊𝑊 = 𝑤
𝑏𝑒𝑠𝑡𝐸𝑟𝑟𝑜𝑟 = 𝑒𝑟𝑟𝑜𝑟

http://www.cs.ucr.edu/~eamonn/time_series_data/

39

Average speed up
On the 𝑁2 Term
𝑁 ≤ 200 ⇒ 106x
𝑵 > 𝟐𝟎𝟎 ⇒ 𝟏84x

On the 𝐿3 Term
𝐿 ≤ 300 ⇒ 67x
𝑳 > 𝟑𝟎𝟎 ⇒ 250x

HandOutlines (𝑳 = 𝟐𝟕𝟎𝟗) - 1000x

DTW with LB Keogh 105 days

DTW with UCR Suite 100 days

PrunedDTW with LB Keogh 15 days

PrunedDTW with UCR Suite 14 days

FastWWS 2.5 hours

State of the arts: 10s

FastWWS: 1s

FastWWS is FASTER and more EFFICIENT than all known methods!

40

FastWWS can SCALE too!

At just above 20k,
LB Keogh takes

more than a day

At around 45k,
UCR Suite takes
more than a day

More than a week
at 100k

FastWWS takes
only 6 hours

The short length
(𝐿 = 24) affects

PrunedDTW

41

FastWWS with PrunedDTW

FastWWS-PrunedDTW
1. Compute Euclidean Distance

(𝑤 = 0)
2. Use it as upper bound to prune

DTW at larger window

• Not necessary faster
• FastWWS is faster on 55% of the

Benchmark datasets
• Due to overhead in PrunedDTW

in checking the upper bounds

42

Classification Accuracy

Accuracy should be the same as
the window found is the same

and FastWWS is EXACT

Conclusions

• A novel and exact algorithm to speedup the search for the best
parameter (warping window) for DTW
• FastWWS is more EFFICIENT and FASTER

• FastWWS can SCALE

• Our results, datasets and source code are online at
• https://bit.ly/SDM18

• https://github.com/ChangWeiTan/FastWWSearch

• Slides: http://changweitan.com/research/SDM18-slides.pdf

43

https://bit.ly/SDM18
https://github.com/ChangWeiTan/FastWWSearch
http://changweitan.com/research/SDM18-slides.pdf

Future Work

• Search for the best parameter for other TS similarity functions
• LCSS (𝛿, 𝜀), MSM (𝑐), ERP (𝑔, 𝜆) etc.

• Satisfies the three properties:
1. Its distance stays valid for some parameters

2. Its distance is monotone with its parameters

3. Its lower bound is monotone with its parameters

• Scaling up the State of the Arts in Time Series Classification
• Elastic Ensembles (EE) [1]

• Collective of Transformation-Based Ensembles (COTE) [2]

44

[1] Lines, J., & Bagnall, A. (2015). Time series classification with ensembles of elastic distance measures. Data Mining and Knowledge Discovery, 29(3), 565-592.
[2] Bagnall, A., Lines, J., Hills, J., & Bostrom, A. (2015). Time-series classification with COTE: the collective of transformation-based ensembles. IEEE Transactions on Knowledge and Data Engineering,
27(9), 2522-2535.

45

Thank you!
Questions and Answers

CW. Tan M. Herrmann G. Forestier G.I. Webb F. Petitjean

chang.tan@monash.edu github.com/ChangWeiTan/FastWWSearch bit.ly/SDM18

This work was supported by the Australian Research Council under grant DE170100037. This material is based
upon work supported by the Air Force Office of Scientific Research, Asian Office of Aerospace Research and

Development (AOARD) under award number FA2386-16-1-4023

