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What is a Time Series?

e Collection of observations made sequentially, more intuitive visually

* Many data can be transformed into time series - Satellite Image Time Series
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Dynamic Time Warping

e a.k.a. DTW — similarity function to align time series 0 (L?)
* Nearest Neighbour Algorithm (NN-DTW) — Hard to beat [1]
e Used in many fields: Finance, Engineering, Speech Recognition, ...

Euclidean Distance Dynamic Time Warping
One-to-one alignment Nonlinear alignment

[1] Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2017). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and
Knowledge Discovery, 31(3), 606-660..



Dynamic Time Warping

* Aligns two time series QQ and C using Dynamic Programming
* Build a cost matrix and solve:

DeC(i—1,j—1)
D?C(i,j) = 8(q;¢;) + ming  DUC(i —1,j)
DOL(i,j—1)

* where 5(qi, cj) = L,—norm

(=Y

DTW(Q, €) = (D¢ (m, n))5



Dynamic Time Warping

* Every possible alignment of Q and C is a warping path, p
p = |wy, ..., Wwg]

* wx = (i,j) represents an association of q; < ¢; aligned by DTW
* DTW(Q, C) finds the cheapest warping path (“best”)
\




Warping Window

 Warping Window, w is a global constraint on the alignment of DTW
such that the elements of Q and C can only be mapped if they are
less than w apart, w = {0, ..., L}

DTW with w = L DTW withw=3 WwW=3 DTW withw = 0
—

Full DTW Warping windows, w Euclidean Distance 6



Why learn the best warping window?

 Strong influence on accuracy 0.6
* On CinC ECG torso dataset, error Shapacal e e astesel
rate reduced from 35% to 7% 0.5[ | —— G ca torso

* Outperforms all existing time i
series classification (TSC)

methods

 State of the art — COTE and EE
learn the best warping window for
DTW

* Speedup DTW

Test Error, e
=]
L

0.2F

0.1

/ w=0.05X%XL

’
* Smaller w means we don’t need 0b—i -
. 0 0.02 0.04 0.06 008 0.1 0.12 0.14 0.16 0.18 0.2
to COmpUte the fU” DTW matrix Warping Window, w (Percentage of time series length, L)
Bagnall, A, Lines, J., Bostrom, A., Large, J., & Keogh, E. (2017). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and 7

Knowledge Discovery, 31(3), 606-660..



How to learn the best warping window?

for w =0toL do —— parameterto NN-DTW algorithm
error = 0
for each sinT do

_ Leave One Out Cross Validation (LOO-CV)
nng = nn_search (S’ T\S’ W) Can be any NN-DTW algorithm

if nng.class # s.class then error++

if error < bestError then
bestWW = w

bestError = error



Nearest Neighbour — DTW Search

e Lower Bound DTW Search

bestDist = oo LB Kim
LB Keogh

 Naive DTW Search

bestDist = oo

for each cinT do for each cinT do

IbDist = lowerBound(q,c,w)
if [bDist < bestDist then
dtwDist = DTW (q, c,w)
if dtwDist < bestDist then
bestDist = dtwDist

nnindex = c.index

dtwDist = DTW (q, c,w)
if dtwDist < bestDist then
bestDist = dtwDist

nnindex = c.index

[1] Kim, S. W., Park, S., & Chu, W. W. (2001). An index-based approach for similarity search supporting time warping in large sequence databases. In Data Engineering, 2001.

Proceedings. 17th International Conference on (pp. 607-614). IEEE.
[2] Keogh, E., & Ratanamahatana, C. A. (2005). Exact indexing of dynamic time warping. Knowledge and information systems, 7(3), 358-386.



DTW Lower Bounds

* LB Kim * LB Keogh
|q1 o Cll L (ql — Ui)z,ifqi > Ui
LB_Kim(Q, C) = max{ 19, = el LB_Keogh,,(Q,C) = z< (q; — L)?if q; < L
|dmax — Cmax| i=1 \ 0, otherwise

(

k |Qmin — Cmin |

Maximum

First

Y - Minimum
Kim, S. W., Park, S., & Chu, W. W. (2001). An index-based approach for similarity search Keogh, E., & Ratanamahatana, C. A. (2005). Exact indexing of dynamic time
supporting time warping in large sequence databases. In Data Engineering, 2001. warping. Knowledge and information systems, 7(3), 358-386.

Proceedings. 17th International Conference on (pp. 607-614). IEEE. 10



Reversing Query/Candidate in LB Keogh

Envelope on Q Envelope on C
LB_Keogh,, (Q, C)

. max(LB_KeoghW (Q, C), LB_Keogh,, (C, Q))

* Increase tightness of LB Keogh

* Envelopes can be pre-computed

*  We will show how we utilised all these “tricks” in our algorithm

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., ... & Keogh, E. (2012, August). Searching and mining trillions of time series subsequences under
dynamic time warping. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 262-270). ACM.
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Naive approach learns the best warping window requires 8 (N?L?) operations

Satellite Image Time Series
N = 1,000,000
L =146

Search time (s)

a X 10°
. _ FastWWws - 6 hours <= Qur method
Narve DTW UCR Suite - 7 days
3.5+ E$ ""'!m b?:—:;“?::" LB Keogh - 18 days
Wil uice : _
| Our Method - FastWWSearch Naive DTW - 32 days
3 | .
25 _ _ _ _ e ___Z] 1 month
FastWWs - 2 hours
21 UCR Suite - 1.6 days

LB Keogh - 5 days

FastWWws - 17 mins Naive DTW - 8 days

1.5+~ UCR Suite - 7 hours
LB Keogh - 16 hours
Maive [}T'I.l‘u’I - 30 hours

_____________________ 1 week
0.5+
D___-_ } _— 1 — — 0 — — — — ., — — . ] 1dﬂ1'.|f
0 1 . 3 4 5 & 7 8 9 10

Size of training dataset x 10%

Efficiently Search for the Best Warping Window of Any Time Series Dataset

12



Related Methods

* Pruned DTW

* UCR Suite

* Improve efficiency of NN-DTW by
minimising DTW computations

* 4 optimisation techniques
* Early abandoning Z-Normalisation
e Reordering early abandoning

e Reversing query and candidate in LB
Keogh

e Cascading lower bounds

* Did not use to learn warping
window but can be repurposed for
this task

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., ... &
Keogh, E. (2012, August). Searching and mining trillions of time series subsequences
under dynamic time warping. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 262-270). ACM.

Improve efficiency of DTW

Compute an upper bound to
minimise the computations by
skipping the cells of the cost
matrix that are larger

Uses the DTW value with smaller
w as the upper bound to prune
DTW with larger w

Improvement for warping window
search is minimal

Silva, D. F., & Batista, G. E. (2016, June). Speeding up all-pairwise dynamic time
warping matrix calculation. In Proceedings of the 2016 SIAM International Conference on
Data Mining (pp. 837-845). Society for Industrial and Applied Mathematics.



Fast Warping Window Search for DTW

* a.k.a. FastWWS - An exact method

* LazyAssessNN
* FastFilINNTable

* Use links between different values of the loops

for w=0toL do
These loops are All optimisation in the
independent error =0 +Op
. literature occurs here
for each sinT do

(1) For each warping nng = nn_search(s, T\s, w)
window, w if nng.class # s.class then error++
(2) Find the nearest

neighbour nn of each

. o if error < bestError then
time series sin T'\s

bestWW = w

bestError = error »



Properties for FastWWS

1. Warping path can be valid for several Full DTW, w = 24
windows

* w has a “validity”
 skip computations of all valid w

* Example:
* Warping pathisvalidtow = 6
* DTW,,(Q,C) = DTW,(Q, ()
» Skip all DTW from w = [24, ..., 6]

w 4 5 6 7 23 24

DTW,,(Q,C)| .. |882|836|804|804| .. |8.04]|8.04




Properties for FastWWS

1. Warping path can be valid for several windows

i &

FU”DTW,W=24 w =6 w=5 16




2. DTW is monotone with warping window
* DTW,,(Q,C) < DTW,,_41(Q, C)

DTW Distance

Properties for FastWWS

* LB_Keogh,, (Q,C) < LB_Keogh,,_,(Q, C)

3|' 1.8 |-
_Tl _T1
_T2 1.6 —T2
2.5 DTW distance is constant when T, 14 Ty
the warping path is valid
8 1.2
=
2t s
a 1
=
warping path for Ty is valid until w=3 2 08k
2 0.
15 / xl
D o6t
warping path for T, is valid until w=1
1 04t —
warping path for T, is valid until w=3 02 \ \
' \
0.5 1 1 1 D L L ! L
] 5 10 15 20 0 5 10 15 20

Warping Windows, w Warping Windows, w

New Lower Bounds to prune Nearest Neighbours before computing DTW,, (Q, C)
DTW,,(Q,C) = DTW,,;1(Q,C)
LB_Keogh,, (Q, C) = LB_Keogh,,,;(Q,C) = LB_Kim(Q, C)

3. LB Keogh is monotone with warping window

17



FastWWS Intuition

* Efficiently fill up a NN table, giving the nearest neighbour of every time series for all windows

* Naively create the table using DTW, requires 8(N?L3) operations

Prior approaches typically go from smallest to largest with a subset of windows

Nearest neighbor at warping windows
0 1 f L—2 L—1
T, | T54(2.57) T55(0.98) --- T55(0.98) T55(0.98)
Tn | Teo(4.04) Ty7(1.61) -+  Ty7(1.61) Ty7(1.61)

—
FastWWS goes from largest to smallest, fast enough to test all windows

18



FastWWS Intuition

* FastWWS goes from largest to smallest, applies to all or a subset of windows

* Large window validity for DTW,,

|
— (Most of the time)
—T, * No bounds are necessary
2.5 DTW distance is constant when T, o DTW has not Changed
the warping path is valid
& | Thus obtain DTW,, ,;, and/or LB_Keogh,, . 5
& for “FREE” as the lower bound for DTW,,,
A
warping path for T; is valid until w=3
E L5 — : 1 :
Tighter bounds for pruning
warping path for T is valid until w=1
DTWW(Q; C) = DTWW+1(Q: C)
1r .
warping path for T, is valid until w=3 LB_KeOghw(Q; C) = LB_KeOghW+1(Q; C) = LB_Klm(Q; C)
0.5 Only use the value at w 4+ k when available, no

0 5 10 15 =0 point in computing DTW,, ;. for DTW,,

Warping Windows, w 19



FastWWS Intuition

* FastWWS goes from largest to smallest, applies to all or a subset of windows

DTW Distance

3 [

2.5F

DTW distance is constant when

the warping path is valid

—

warping path for T; is valid until w=3

warping path for T is valid until w=1

warping path for T, is valid until w=3

y L 1
5 10 15

Warping Windows, w

L
20

If we find the nearest neighbour for a
time series at window, w = L and the
warping path is valid to w = 0, then
we only need to do 1 DTW
computation

When we calculate DTW,,(Q, C), even
if candidate C is not the nearest
neighbour of Q, we do not need to
recompute DTW,,,(Q, C) for all
windows w' that are valid

20



Lazy Nearest Neighbour Assessment

* Assess if a pair of time series (Q, C), can be less than distance d for
window w

* Postpones calculations for as long as possible DTWy 11
1. First prune with lower bounds from larger window LB_Keogh,,,

2. Try lower bounds of increasing complexity until \ LB Kim
a. ALB,(Q,C)>d LB Keogh

b. Calculated DTW,,(Q, C)

* When w decreases, any value previously calculated for a larger
window becomes a lower bound for current w, stored in a Cache,

Co.0)



LazyAssessNN Algorithm

1. First do LB Kim if hasn’t been done ]

if cachegcis empty do cachey =|LB_Kim(Q, ()
if cacheg.stoppedAt == DTW,,,, and wisvalid then

if cachegpc.value = d return prunedByDTW else return cacheg.value
if cacheg.stoppedAt == LB_Kim or LB_Keogh,,;, then

if cachepc.value = d return prunedByLB

cachey - = LB_Keogh,,(Q,C) if cacheyc.value > d return prunedByLB
cachey - = LB_Keogh,,(C,Q) if cacheyc.value > d return prunedByLB
cachey - = DTW,,(C,Q) if cachegyc.value = d return prunedByDTW
return cacheg . value

22



LazyAssessNN Algorithm

2. Check lower bounds DTW and LB Keogh from larger
from previous window window (property 2 & 3)

if cachegcis empty do cache, = LB_Kim(Q,C
if cacheg.stoppedAt ==|DTW,, ., fnd wisvAlid then
if cachegc.value = d return prunedByD else return cacheg,.value

if cachegc.stoppedAt == LB_Kim or [LB_KeoghW+,J then
if cachepc.value = d return prunedByLB

cachey - = LB_Keogh,,(Q,C) if cacheyc.value > d return prunedByLB
cachey - = LB_Keogh,,(C,Q) if cacheyc.value > d return prunedByLB
cachey - = DTW,,(C,Q) if cachegyc.value = d return prunedByDTW
return cacheg . value

23



4. If current winc.jow w 3. Use DTW from previous window (w + k) if
is not valid current window w still valid (property 1)
if cacheycisempty do cachey = LB_Kim(0,
if cacheg.stoppedAt == DTW,,,, and |w isvalid| then
if cachegpc.value = d return prunedByDTW else return cacheg.value

if cacheg.stoppedAt == LB_Kim or LB_Keogh,,;, then
if cachepc.value = d return prunedByLB

cachey = LB_Keogh,,(C,Q) if cachepc.value = d return prunedByLB
cachey - = DTW,,(C,Q) if cachegyc.value = d return prunedByDTW
return cacheg . value

[ cachey - = LB_Keogh,,(Q,C) if cacheyc.value > d return prunedByLB

* Next call to LazyAssessNN will be with a smaller w
* Possible to use Early Abandon on LB_Keogh and LB_Improved [1]

[1] Lemire, D. (2009). Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern recognition, 42(9), 2169-2180.

24



Fast Fill the Nearest Neighbour Table

NN. fillAll(_, ) V{w,N} < Initialise NN table with o NN distance
for s« 2toN do < Start with second series
for weL—-—1downto0 do <«—— start from largest window
if NNZ;S # (@ then < a. Check if NN for T; exist at this window

for t«1tos—1 do <«—— a. Update NN for all previous series

res = LazyAssessNN(TS, T, w, NNVTj) if resnotpruned then NNVTj = (T, res)
else
for t<1tos—1 do

—— res = LazyAssessNN(Ty, T, W,NNVTj) if resnotpruned then NNVTj = (T, res)
e res = LazyAssessNN(TS, T;, W,NNVTV’:) if resnotpruned then NNVTVt = (T, res)

T. . T. T.
for w' € NNMf.Valld do NNV;, — NNV; <4 d. Propagate NN for all valid windows

== pb. Find NN for current series

== c. Check if current series T; is NN for previous series

25




Fast Fill the Nearest Neighbour Table

 Build table for a subset T' € T of increasing sizeuntil T’ =T

1. Start with 2 time series T' = {T;, T, } and fill the table asif T' is the
entire dataset, startingfromw =L —1tow =0

* T, is the nearest neighbour of T; and vice versa

2. Add a third time series T3 from T\T' to T', T' = {T, T,, T3}
a. Check if nearest neighbour exists for T;
b. Find the nearest neighbour of T3 within T'\T; = {Ty, T,}
c. Checkif T; is the nearest neighbour of T; and/or T,
d. Propagate nearest neighbour of T3 for all valid windows

3. Repeat step 2 with the next time series, T,, in T\T until T' =T



FastWWS Example

* Let T be a training dataset of 4 time series, T = {Ty, T, T3, T4 }
* Length of each time series is L = 24

YV Y A V

27



Cache

StoppedAt

Value

cacher, r,

LB 1Klm

0.040

[ Precompute LB Kim ]

FastWWS Example

Reference: Nij(window validity, dyn)

w 0 1 2 3 4 5 22 23
Tl co co co co co co co T,(5, 4.254)
T2 oo oo oo oo oo T,(5, 4.254) T,(5, 4.254) | Ty(5, 4.254)

\

1. Initialise Cache & NN Table with co NN distance, NN. fillAll(_, ) V{w, N}
2. StartwithT' ={Ty,T,}, w = 23,dyy = o and Query: T,, Candidate: T;

* LazyAssessNN(T,,T,, 23, x):

* Assign T; as the Nearest Neighbour for T, at w = 23 and vice versa for Ty

* cacher, 1, = LB_Kim(Ty,T,) = 0.040 < o continue
* Compute cacher, , = LB_Keogh,3(T;,T,) = 0.000 < o continue
* Compute cacher, r, = LB_Keogh,3(T3,T;) = 0.046 < o0 continue

'J

[ Propagate NN\Z,2

acrossw = 22to 5

]

* Compute cacher, r, = DTW,3(Ty,T,) = {validTill = 5,4.254} < co return cacher, r,.value

* Propagate Nearest Neighbour of T, atw = 23 forw = 22to 5

28



Cache

StoppedAt

Value

cacher, r,

DTW,5

4.254

|

Update cache every time
we compute a distance

FastWWS Example

Reference: Nij(window validity, dyn)

w 0 1 5 22 23
T1 oo oo T,(5, 4.254) T,(5, 4.254) | T,(5, 4.254)
T2 oo oo T,(5, 4.254) T, (5, 4.254)\T\T1(5, 4.254)

3.

4.

Continue withw = 22, dyn = 4.254 and Query: T,, Candidate: T}

* Since we have NN for T, at w = 22, we have to check if T, is NN of T}

* LazyAssessNN(T,,T,, 22, x):

e Assign T, as the Nearest Neighbour for T; at w = 22

* cacher, r,.stoppedAt == DTW,3 and w = 22 s valid

* cacher, r,.value = 4.254 < oo return cacher r,.value

Repeat step 3 for all windows, w € {21, ..., 5}

.

w = 22 is still valid
~ DTW,, (T, T)
= DTW,3(T, T2)
= 4.254

J

29



Cache StoppedAt Value
cacher, r, DTW: 4.254 F WWS E I
Reference: Nij(window validity, dyn)
w 0 1 2 3 4 5 22 23
Tl T,(0, 11.89) | T»(1, 8.972) | T,(2,7.341) | T,(3, 6.243) | T,(4, 4.814) | T,(5, 4.254) T,(5, 4.254) | T,(5, 4.254)
TZ T,(0,11.89) | T;(1,8.972) | T,(2,7.341) | T4(3, 6.243) | T4(4, 4.814) | T;(5, 4.254) T,(5,4.254) | T,(5, 4.254)

5. Continue withw = 4,dyy = o and Query: T,, Candidate: T}
* LazyAssessNN(Ty,T,,4,»):

cacher, r,.stoppedAt == DTW5 and w = 4 is not valid
cacher, r,.value = 4.254 < c0 continue

Compute cacher, , = LB_Keogh,(T;,T;) = 0.000 < o continue

Compute cacher, r, = LB_Keogh,(T,,T;) = 2.076 < © continue
Compute cacher, 7, = DTW, (T, T;) = {validTill = 4, 4.814} < o return cacher, r,.value
* Assign T; as the Nearest Neighbour for T, at w = 4 and vice versa for T}

6. Repeat step 5 for all windows, w € {3, ..., 0}

w = 4 is not valid, recompute

DTW if necessary

Cannot propagate NN as
window is only valid forw = 4)

30




Cache StoppedAt Value
cacher, r, DTW, 11.89
waen |k o | FQStWWS Example
cacher, r, LB_Kim 0.317
Reference: NNaf(window validity, dyn)
W 0 1 2 3 4 5 22 23
T 1 T,(0, 11.89) | Ty(1, 8.972) | T,(2, 7.341) | Ty(3, 6.243) | Ty(4, 4.814) | T,(5, 4.254) T,(5, 4.254) | T,(5, 4.254)
T2 T,(0,11.89) | Ty(1,8.972) | Ty(2, 7.341) | Ty(3, 6.243) | Ty(4, 4.814) | Ty(5, 4.254) Ty(5, 4.254) | Ty(5, 4.254)
T3 (o @ (o @ (o @ (o @ (o @ (o @ (o o/ (o o/
| J
7. AddTs, T’ ={Ty, Ty, Ts} !

* cacher, r, = LB_Kim(Ty,T;5) = 0.361 <
* cacher,r, = LB_Kim(T,T3) = 0.317 <
* Since LB_Kim(T,, T3) < LB_Kim(Ty, T3), start with (T, T3) pair

\

When adding a new
series, initialise the
row to o - meaning
no NN candidate yet

J
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Cache StoppedAt | Value DTW23(T2,T3) = 1.612 < 4.254
cacher,r, | DTW, 11.89 Update NNz = T
23 3
aiers, | nxm |0 | FQSEWWS Example
cacheTZ,T3 LB Kim 0.317
Reference: Nij(windo validity, dyn)
w 0 1 2 3 4 5 22 | 23
T 1 T,(0, 11.89) | Ty(1, 8.972) | T,(2, 7.341) | T,(3, 6.243) | T,(4, 4.814) | T,(5, 4.254) T, (5, 4.254) XZ(S' 4.254)
T2 T,(0,11.89) | Ty(1,8.972) | T,(2, 7.341) | T.(3, 6.243) | T,(4, 4.814) | Ty(5, 4.254) T,(5, 4.254) | T5(4, 1.612)
T3 co co co co co oo oo T,(4, 1.612)

8. ForT,,T;,w = 23,dyy = 0 and Query: T, Candidate: T,

* LazyAssessNN(T,, Ts, 23, o):
* cacher, r..value = 0.317 < © continue
* Compute cacher, r, = LB_Keogh,3(T3,T5) = 0.000 < o continue
* Compute cacher, r, = LB_Keogh,3(T,T3) = 0.000 < © continue
* Compute cacher, r, = DTW,3(T,,T5) = {validTill = 4,1.612} < oo return cache.value
* Assign T, as the Nearest Neighbour for T3 at w = 23
* Since DTW,5(T,,T5) = 1.612 < DTW,5(T;,T,) = 4.254, Update T; as the Nearest Neighbour for T, atw = 23

/

[ Nearest Neighbour for T5 is T, ]

32



Cache StoppedAt | Value DTW23(T1, T3) = 3.326 < 4.254
cacher, 1, DTW, 11.89 Update NN% =T,
aiers, | nxm |0 | FQSEWWS Example
cacher, r, DTW,; 1.612

Reference: NNaf(window lidity, dyn)
w 0 1 2 3 4 5 22 \ 23
T 1 T,(0,11.89) | T,(1,8.972) | T,(2, 7.341) | T,(3, 6.243) | T,(4, 4.814) | T,(5, 4.254) T, (5, 4.254) | T5(2, 3.326)
T2 T,(0,11.89) | T,(1,8.972) | T,(2,7.341) | T,(3, 6.243) | T,(4, 4.814) | T,(5, 4.254) T,(5, 4.254) | Ts(4, 1.612)
T3 co co co co co co oo T,(4, 1.612)

9. ForTy,T;,dyny = 1.612,DTW,5(Ty, T,) = 4.254 and Query: T;, Candidate: T;
» LazyAssessNN(T;,Ts,23,1.612):
* cacher r,.value = 0.361 < 1.612 continue

 Compute cacher, r, = LB_Keogh,3(T;,T3) = 0.000 < 1.612 continue
 Compute cacher, r, = LB_Keogh,3(T;,T3) = 0.039 < 1.612 continue

* Compute cacher, r, = DTW,3(Ty, T3) = {validTill = 2,3.326} > 1.612 return prunedByDTW

* No change to Nearest Neighbour for T3 atw = 23
* Since DTW,5(Ty,T3) = 3.326 < DTW,5(T;,T,) = 4.254, Update T5 as the Nearest Neighbour for T; atw = 23

No change to NN§33
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Cache StoppedAt Value

cacher, r, DTW, 11.89

aaen | o | ss | FQSEWWS Example

cacher, r, DTW,; 1.612

Reference: Nij(window validity, dyn)
W 0 1 2 3 4 5 22 23
Tl T,(0, 11.89) | T,(1, 8.972) | T,(2, 7.341) | T,(3, 6.243) | T5(2, 3.326) | T5(2, 3.326) T5(2,3.326) | T5(2, 3.326)
TZ T,(0, 11.89) | Ty(1, 8.972) | Ty(2,7.341) | Ty(3, 6.243) | T5(4, 1.612) | T5(4, 1.612) T5(4,1.612) | T5(4, 1.612)
T3 oo co oo oo T,(4,1.612) | T,(4, 1.612) T,(4,1.612) | T,(4, 1.612)
T T T \ r’
10. Now we are sure about NN,3, NN,% and NN,3

* We can update NN for Ty, T,, T5 forw = 22 to 4 since NN% is valid untilw = 4

. NN% is valid until w = 2 and will be updated later when we move ontow = 2
* Since DTW,5(T,, T3) = 1.612 < DTW,5(Ty, T3) = 3.326, start with (T, T3) pair forw = 3

* DTW,(Ty,T5) = DTW,3(T;,T3) 4 T N\
e DTW,(T,, T3) = DTW,3(T,, Ts3) Propagate NN, and
update NNZ;}, NN‘T/:,2 across
w=22to4
.

34




Cache StoppedAt Value

cacher, r, DTW, 11.89

e | o, | FQStWWS Example

cacher, r, DTW, 1.612 .

Reference: NN, ;(window validity, dyn)

W 0 1 2 3 4 5 22 23
T1 T5(0, 4.911) | T5(1, 3.486) | Ts(2,3.326) | Ts(2,3.326) | Ts(2,3.326) | T5(2, 3.326) Ts(2,3.326) | T5(2, 3.326)
T2 T5(0, 4.395) | T5(1,2.598) | Ts(2, 1.882) | Ts(3,1.614) | Ts(4, 1.612) | T5(4, 1.612) Ts(4,1.612) | T5(4, 1.612)
T3 T,(0, 4.395) | Ty(1,2.598) | T»(2, 1.882) | T,(3, 1.614) T»(4, 1.612) | T»(4, 1.612) T,(4,1.612) | T,(4, 1.612)

11. For T,, T3 continue with w = 3, dyy = o and Query: T3, Candi
» LazyAssessNN(T,,Ts, 3, o):

* cacher, ..stoppedAt == DTW, and w = 3is not valid

cacher, r, = 1.612 < o continue

Compute cacher, r, = LB_Keogh3(T;,T3) = 0.421 < © continue
Compute cacher, r, = LB_Keogh3(T5,T;) = 0.328 < 0 continue
Compute cacher, r, = DTW;5(T,, T5) = {validTill = 3,1.614} < oo return cache.value
* Assign T, as the Nearest Neighbour for T3 at w = 3
* Since DTW5(T,,T5) = 1.614 < DTW;(T;,T,) = 6.243, Update T; as the Nearest Neighbour for T, atw = 3

12. Repeat the algorithm for all windows, w € {2, ..., 0}

w = 3 is not valid,
recompute DTW if
necessary
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FastWWS Example

Reference: Nij(window validity, dyn)

w 0 1 2 3 4 5 22 23

T 1 T3(0,4.911) | Ts(1,3.486) | T5(2, 3.326) | T5(2, 3.326) | Tx(2, 3.326) | T:(2, 3.326) Ts(2, 3.326) | T5(2, 3.326)
T2 T,(0, 1.658) | T,(1,0.632) | T,(2, 0.620) | T,(3,0.599) | T,(3,0.599) | T,(3, 0.599) T,(3,0.599) | T,(3, 0.599)
T3 T,(0, 4.395) | T,(1,2.598) | T,(2, 1.882) | Ty(3, 1.614) | T»(4, 1.612) | T,(4, 1.612) T,(4,1.612) | T,(4, 1.612)
T4 T,(0,1.658) | Ty(1,0.632) | T,(2,0.620) | T,(3,0.599) | T,(3,0.599) | T,(3, 0.599) T,(3,0.599) | T,(3,0.599)

13. Continue adding T, to T’ and repeat previous steps until T' = T = {T, T, T3, T, }
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FastWWS Example

w 0 1 2 3 4 5 22 23
T, [T | T, | T: | Ts | T, | Ty T, | T,
T, | & | T, | T, | T, | T, |T, T, | T,
. ' | T, | T, | T, | T, | T, T, | T,
. \&h | T, | T, | T, | T, | T, T, | T,
Acc 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

14. Classify every instance for each window in one pass of the table
* Yields the best window at w = 0 with LOO-CV accuracy of 0.75



Experimental Evaluation

* Evaluate the efficiency of FastWWS |for w=0toL do
» LOO-CV with NN Search error =9

for each sinT do
1. DTW with LB Keogh (Baseline) nng = nn_search(s, T\s, w)

2. UCR Suite if nng.class # s.class then error++

3. Pruned DTW with LB Keogh
] ith 4 DTW if error < bestError then
4. UCR Suite with Prune bestWW = w

e LOO-CV with FastWWS bestError = error

 Exhaustive search on all methods
* Average results over 10 runs for different reshuffling of T
e 85 benchmark time series datasets hitp:;//www.cs.ucredu/~eamonn/time_series_data/



FastWWS is FASTER and more EFFICIENT than all known methods!

8
10 HandOutlines (L = 2709) - 1000x
a DTW with LB Keogh 105 days
5 N ; DTW with UCR Suite 100 days
107 [ n
o FastW\WSearch is faster here  .§ * PrunedDTW with LB Keogh 15 days
]
- ;ﬁ PrunedDTW with UCR Suite 14 days
= 104 . ' FastWWs 2.5 hours
[
= 100K SITS
L]
i #1_
o ﬁ Average speed up
2 402 - On the N% Term
I3 i ¥ N < 200 = 106x
g Competitor is faster here N > 200 = 184x
-
I ® | B Keogh
0% | ® UCRS 1‘.':’,: On the L3 Term
State of the arts: | 10s v e L <300 = 67
> LB_Keogh-PrunedDTW = = 0/X
FastWWS: 1s ¢ UCRSuite-PrunedDTW L > 300 = 250x
1072 '
1072 10° 102 104 108 108

FastWWSearch, search time (s)
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FastWWS can SCALE too!

LB Keogh - 16 hours LB Keogh - 5 days LB Keogh - 18 days
UCR Suite - 7 hours  UCR Suite - 1.6 days UCR Suite - 7 days
FastWWs - 17 mins  FastWWS - 2 hours FastWWS - 6 hours

At just above 20k, l 10° -
LB Keogh takes

more than a day

A

£ 10t | More than a wee
@ |
£ : at 100k
= |
s i | | FastWWS takes
o 10
| | only 6 hours
@ | L \o y,
( | |
At around 45k, _ : :
UCR Suite takes .1DD | DTW with LEB_Keogh | The short Iength
more than a day | DTW with UCR Suite I _
| | | (L = 24) affects
| PrunedDTW with LB_Keogh : p dDTW
| Our Method - FastWW&earch | rune
1D-2 | | ] ] | ] 1 | ] |
0 1 2 3 4 ) 6 7 8 9 10

Size of training dataset «104 40



FastWW5Search--PrunedDTW, search time (s)

10% ¢
107§

10%

FastWwWSearch is faster here
46 datasets

FastWWS with PrunedDTW

FastWWsSearch--PrunedDTW is faster here
39 datasets

[
DI
fed

107t

10” 10! 107 10° 10*
FastWWSearch, search time (s)

FastWWS-PrunedDTW

1. Compute Euclidean Distance
(w=0)

2. Use it as upper bound to prune
DTW at larger window

* Not necessary faster

* FastWWS is faster on 55% of the
Benchmark datasets

* Due to overhead in PrunedDTW
in checking the upper bounds
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Classification Accuracy

Best warping window learnt by the following methods

Datasets LB Keocn UCR Surte  LB_KeocH UCR FastWWSearch
PruNeDDTW  SuiTE
PruNEDD TW
AHlwords 24 24 24 24 24
Adiac [§] 3 [§] G [§]
ArrowHead 0 0 0 0 0
Beef 0 0 0 0 0
BeetleFly 36 36 36 36 36
BirdChicken 33 33 33 33 33
CBF 14 14 14 14 14
Car 9 9 9 ] 9
ChlorineConcentration 0 0 0 0 0
CinC _ECG _torso 10 10 10 10 10
Coffee 0 0 0 0 0
Computers T4 ' T4 T4 74
Cricket_X 31 31 31 31 31
Cricket_Y a7 47 47 a7 47
Cricket_Z 15 15 15 15 15
DiatomSizeReduction 0 0 0 0 0
DistalPhalanxOutline AgeGroup 1 1 1 1 1
DistalPhalanxOutlineCorrect 2 2 2 2 2
DistalPhalanxTW 0 0 0 0 0
ECG200 0 0 0 0 0
ECGH000 1 1 1 1 1
ECGFiveDays 0 0 0 0 0
Earthquakes i 17 7 17 7
ElectricDevices 13 13 13 13 13
FISH 19 19 19 19 19
FaceAll 4 4 4 4 4
FaceFour G § G 6 G
FacesUCR 16 16 16 16 16
FordA 2 2 2 2 2
FordB 6 G 6 [§] i}

Accuracy should be the same as
the window found is the same

1 —_

-
0.9
g
3
% 0.8
Competitor is more accurate here
5 0.7}
g
= 0.6
i
i
m 0.5F
W
2 0.4
o
EUE_ / FastWWSearch is more accurate here
E
8 0.2 ".r“./ L LB_IEEDl__:]h
r’,.f‘ m  UCR Suite
0.1k - 4 LB Keogh-PrunedDTwW
' J/f % UCRSuite-PrunedDTwW
D (| 1 1 1 1 1 (| (| (|
0 0.1 0.2 0.3 0.4 0.2 0.6 0.7 0.8 0.9

FastWwWSearch, classification accuracy

and FastWWS is EXACT
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Conclusions

* A novel and exact algorithm to speedup the search for the best
parameter (warping window) for DTW
* FastWWS is more EFFICIENT and FASTER
* FastWWS can SCALE

e Our results, datasets and source code are online at
* https://bit.ly/SDM18
* https://github.com/ChangWeiTan/FastWWSearch
e Slides: http://changweitan.com/research/SDM18-slides.pdf
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Future Work

e Search for the best parameter for other TS similarity functions
* LCSS (6,¢), MSM (c¢), ERP (g, A) etc.
 Satisfies the three properties: 3

1. Its distance stays valid for some parameters \;
2. Its distance is monotone with its parameters
3. Its lower bound is monotone with its parameters

nnnnnnnnnnnnnnnnnnnnnnnnn

N
\/ warping path for Ty is valid until w=3
o5k . . .
0 5

1
Warping Windows, w

 Scaling up the State of the Arts in Time Series Classification

* Elastic Ensembles (EE) [1]
* Collective of Transformation-Based Ensembles (COTE) [2]

[1] Lines, J., & Bagnall, A. (2015). Time series classification with ensembles of elastic distance measures. Data Mining and Knowledge Discovery, 29(3), 565-592.
[2] Bagnall, A., Lines, J., Hills, J., & Bostrom, A. (2015). Time-series classification with COTE: the collective of transformation-based ensembles. IEEE Transactions on Knowledge and Data Engineering,
27(9), 2522-2535.
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