Efficient Search of the
Best Warping Window for
Dynamic Time Warping

OO

CW. Tan M. Herrmann G. Forestier G.l. Webb F. Petitjean

2018 SIAM International Conference on DATA MINING
3 May 2018

What is a Time Series?

e Collection of observations made sequentially, more intuitive visually

* Many data can be transformed into time series - Satellite Image Time Series

SITS: Evolution of Maize

0.9

0.348,0.245,0.142,0.183,0.203,
0.224,0.252,0.204,0.216,0.229,
0.241,0.177,0.211,0.254,0.360,
— 0.487,0.614,0.669,0.738,0.788,
0.815,0.807,0.817,0.817,0.821,
0.825,0.810,0.796,0.783,0.777,
0.685,0.667,0.591,0.566,0.467,
0.368,0.335,0.301,0.268,0.234,
0.238,0.233,0.262,0.261,0.247,

0.233
P 5 10 15 20 25 30 35 40 45
-" Days
Satellite Images Array of numbers Time series

Every pixel represents a geographic area (Lat, Lon) on Earth]

Dynamic Time Warping

e a.k.a. DTW — similarity function to align time series 0 (L?)
* Nearest Neighbour Algorithm (NN-DTW) — Hard to beat [1]
e Used in many fields: Finance, Engineering, Speech Recognition, ...

Euclidean Distance Dynamic Time Warping
One-to-one alignment Nonlinear alignment

[1] Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2017). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and
Knowledge Discovery, 31(3), 606-660..

Dynamic Time Warping

* Aligns two time series QQ and C using Dynamic Programming
* Build a cost matrix and solve:

DeC(i—1,j—1)
D?C(i,j) = 8(q;¢;) + ming DUC(i —1,j)
DOL(i,j—1)

* where 5(qi, cj) = L,—norm

(=Y

DTW(Q, €) = (D¢ (m, n))5

Dynamic Time Warping

* Every possible alignment of Q and C is a warping path, p
p = |wy, ..., Wwg]

* wx = (i,j) represents an association of q; < ¢; aligned by DTW
* DTW(Q, C) finds the cheapest warping path (“best”)
\

Warping Window

 Warping Window, w is a global constraint on the alignment of DTW
such that the elements of Q and C can only be mapped if they are
less than w apart, w = {0, ..., L}

DTW with w = L DTW withw=3 WwW=3 DTW withw = 0
—

Full DTW Warping windows, w Euclidean Distance 6

Why learn the best warping window?

 Strong influence on accuracy 0.6
* On CinC ECG torso dataset, error Shapacal e e astesel
rate reduced from 35% to 7% 0.5[| —— G ca torso

* Outperforms all existing time i
series classification (TSC)

methods

 State of the art — COTE and EE
learn the best warping window for
DTW

* Speedup DTW

Test Error, e
=]
L

0.2F

0.1

/ w=0.05X%XL

’
* Smaller w means we don’t need 0b—i -
. 0 0.02 0.04 0.06 008 0.1 0.12 0.14 0.16 0.18 0.2
to COmpUte the fU” DTW matrix Warping Window, w (Percentage of time series length, L)
Bagnall, A, Lines, J., Bostrom, A., Large, J., & Keogh, E. (2017). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining and 7

Knowledge Discovery, 31(3), 606-660..

How to learn the best warping window?

for w =0toL do —— parameterto NN-DTW algorithm
error = 0
for each sinT do

_ Leave One Out Cross Validation (LOO-CV)
nng = nn_search (S’ T\S’ W) Can be any NN-DTW algorithm

if nng.class # s.class then error++

if error < bestError then
bestWW = w

bestError = error

Nearest Neighbour — DTW Search

e Lower Bound DTW Search

bestDist = oo LB Kim
LB Keogh

 Naive DTW Search

bestDist = oo

for each cinT do for each cinT do

IbDist = lowerBound(q,c,w)
if [bDist < bestDist then
dtwDist = DTW (q, c,w)
if dtwDist < bestDist then
bestDist = dtwDist

nnindex = c.index

dtwDist = DTW (q, c,w)
if dtwDist < bestDist then
bestDist = dtwDist

nnindex = c.index

[1] Kim, S. W., Park, S., & Chu, W. W. (2001). An index-based approach for similarity search supporting time warping in large sequence databases. In Data Engineering, 2001.

Proceedings. 17th International Conference on (pp. 607-614). IEEE.
[2] Keogh, E., & Ratanamahatana, C. A. (2005). Exact indexing of dynamic time warping. Knowledge and information systems, 7(3), 358-386.

DTW Lower Bounds

* LB Kim * LB Keogh
|q1 o Cll L (ql — Ui)z,ifqi > Ui
LB_Kim(Q, C) = max{ 19, = el LB_Keogh,,(Q,C) = z< (q; — L)?if q; < L
|dmax — Cmax| i=1 \ 0, otherwise

(

k |Qmin — Cmin |

Maximum

First

Y - Minimum
Kim, S. W., Park, S., & Chu, W. W. (2001). An index-based approach for similarity search Keogh, E., & Ratanamahatana, C. A. (2005). Exact indexing of dynamic time
supporting time warping in large sequence databases. In Data Engineering, 2001. warping. Knowledge and information systems, 7(3), 358-386.

Proceedings. 17th International Conference on (pp. 607-614). IEEE. 10

Reversing Query/Candidate in LB Keogh

Envelope on Q Envelope on C
LB_Keogh,, (Q, C)

. max(LB_KeoghW (Q, C), LB_Keogh,, (C, Q))

* Increase tightness of LB Keogh

* Envelopes can be pre-computed

* We will show how we utilised all these “tricks” in our algorithm

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., ... & Keogh, E. (2012, August). Searching and mining trillions of time series subsequences under
dynamic time warping. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 262-270). ACM.

11

Naive approach learns the best warping window requires 8 (N?L?) operations

Satellite Image Time Series
N = 1,000,000
L =146

Search time (s)

a X 10°
. _ FastWWws - 6 hours <= Qur method
Narve DTW UCR Suite - 7 days
3.5+ E$ ""'!m b?:—:;“?::" LB Keogh - 18 days
Wil uice : _
| Our Method - FastWWSearch Naive DTW - 32 days
3 | .
25 _ _ _ _ e ___Z] 1 month
FastWWs - 2 hours
21 UCR Suite - 1.6 days

LB Keogh - 5 days

FastWWws - 17 mins Naive DTW - 8 days

1.5+~ UCR Suite - 7 hours
LB Keogh - 16 hours
Maive [}T'I.l‘u’I - 30 hours

_____________________ 1 week
0.5+
D___-_ } _— 1 — — 0 — — — — ., — — .] 1dﬂ1'.|f
0 1 . 3 4 5 & 7 8 9 10

Size of training dataset x 10%

Efficiently Search for the Best Warping Window of Any Time Series Dataset

12

Related Methods

* Pruned DTW

* UCR Suite

* Improve efficiency of NN-DTW by
minimising DTW computations

* 4 optimisation techniques
* Early abandoning Z-Normalisation
e Reordering early abandoning

e Reversing query and candidate in LB
Keogh

e Cascading lower bounds

* Did not use to learn warping
window but can be repurposed for
this task

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., ... &
Keogh, E. (2012, August). Searching and mining trillions of time series subsequences
under dynamic time warping. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 262-270). ACM.

Improve efficiency of DTW

Compute an upper bound to
minimise the computations by
skipping the cells of the cost
matrix that are larger

Uses the DTW value with smaller
w as the upper bound to prune
DTW with larger w

Improvement for warping window
search is minimal

Silva, D. F., & Batista, G. E. (2016, June). Speeding up all-pairwise dynamic time
warping matrix calculation. In Proceedings of the 2016 SIAM International Conference on
Data Mining (pp. 837-845). Society for Industrial and Applied Mathematics.

Fast Warping Window Search for DTW

* a.k.a. FastWWS - An exact method

* LazyAssessNN
* FastFilINNTable

* Use links between different values of the loops

for w=0toL do
These loops are All optimisation in the
independent error =0 +Op
. literature occurs here
for each sinT do

(1) For each warping nng = nn_search(s, T\s, w)
window, w if nng.class # s.class then error++
(2) Find the nearest

neighbour nn of each

. o if error < bestError then
time series sin T'\s

bestWW = w

bestError = error »

Properties for FastWWS

1. Warping path can be valid for several Full DTW, w = 24
windows

* w has a “validity”
 skip computations of all valid w

* Example:
* Warping pathisvalidtow = 6
* DTW,,(Q,C) = DTW,(Q, ()
» Skip all DTW from w = [24, ..., 6]

w 4 5 6 7 23 24

DTW,,(Q,C)| .. |882|836|804|804| .. |8.04]|8.04

Properties for FastWWS

1. Warping path can be valid for several windows

i &

FU”DTW,W=24 w =6 w=5 16

2. DTW is monotone with warping window
* DTW,,(Q,C) < DTW,,_41(Q, C)

DTW Distance

Properties for FastWWS

* LB_Keogh,, (Q,C) < LB_Keogh,,_,(Q, C)

3|' 1.8 |-
_Tl _T1
_T2 1.6 —T2
2.5 DTW distance is constant when T, 14 Ty
the warping path is valid
8 1.2
=
2t s
a 1
=
warping path for Ty is valid until w=3 2 08k
2 0.
15 / xl
D o6t
warping path for T, is valid until w=1
1 04t —
warping path for T, is valid until w=3 02 \ \
' \
0.5 1 1 1 D L L ! L
] 5 10 15 20 0 5 10 15 20

Warping Windows, w Warping Windows, w

New Lower Bounds to prune Nearest Neighbours before computing DTW,, (Q, C)
DTW,,(Q,C) = DTW,,;1(Q,C)
LB_Keogh,, (Q, C) = LB_Keogh,,,;(Q,C) = LB_Kim(Q, C)

3. LB Keogh is monotone with warping window

17

FastWWS Intuition

* Efficiently fill up a NN table, giving the nearest neighbour of every time series for all windows

* Naively create the table using DTW, requires 8(N?L3) operations

Prior approaches typically go from smallest to largest with a subset of windows

Nearest neighbor at warping windows
0 1 f L—2 L—1
T, | T54(2.57) T55(0.98) --- T55(0.98) T55(0.98)
Tn | Teo(4.04) Ty7(1.61) -+ Ty7(1.61) Ty7(1.61)

—
FastWWS goes from largest to smallest, fast enough to test all windows

18

FastWWS Intuition

* FastWWS goes from largest to smallest, applies to all or a subset of windows

* Large window validity for DTW,,

|
— (Most of the time)
—T, * No bounds are necessary
2.5 DTW distance is constant when T, o DTW has not Changed
the warping path is valid
& | Thus obtain DTW,, ,;, and/or LB_Keogh,, . 5
& for “FREE” as the lower bound for DTW,,,
A
warping path for T; is valid until w=3
E L5 — : 1 :
Tighter bounds for pruning
warping path for T is valid until w=1
DTWW(Q; C) = DTWW+1(Q: C)
1r .
warping path for T, is valid until w=3 LB_KeOghw(Q; C) = LB_KeOghW+1(Q; C) = LB_Klm(Q; C)
0.5 Only use the value at w 4+ k when available, no

0 5 10 15 =0 point in computing DTW,, ;. for DTW,,

Warping Windows, w 19

FastWWS Intuition

* FastWWS goes from largest to smallest, applies to all or a subset of windows

DTW Distance

3 [

2.5F

DTW distance is constant when

the warping path is valid

—

warping path for T; is valid until w=3

warping path for T is valid until w=1

warping path for T, is valid until w=3

y L 1
5 10 15

Warping Windows, w

L
20

If we find the nearest neighbour for a
time series at window, w = L and the
warping path is valid to w = 0, then
we only need to do 1 DTW
computation

When we calculate DTW,,(Q, C), even
if candidate C is not the nearest
neighbour of Q, we do not need to
recompute DTW,,,(Q, C) for all
windows w' that are valid

20

Lazy Nearest Neighbour Assessment

* Assess if a pair of time series (Q, C), can be less than distance d for
window w

* Postpones calculations for as long as possible DTWy 11
1. First prune with lower bounds from larger window LB_Keogh,,,

2. Try lower bounds of increasing complexity until \ LB Kim
a. ALB,(Q,C)>d LB Keogh

b. Calculated DTW,,(Q, C)

* When w decreases, any value previously calculated for a larger
window becomes a lower bound for current w, stored in a Cache,

Co.0)

LazyAssessNN Algorithm

1. First do LB Kim if hasn’t been done]

if cachegcis empty do cachey =|LB_Kim(Q, ()
if cacheg.stoppedAt == DTW,,,, and wisvalid then

if cachegpc.value = d return prunedByDTW else return cacheg.value
if cacheg.stoppedAt == LB_Kim or LB_Keogh,,;, then

if cachepc.value = d return prunedByLB

cachey - = LB_Keogh,,(Q,C) if cacheyc.value > d return prunedByLB
cachey - = LB_Keogh,,(C,Q) if cacheyc.value > d return prunedByLB
cachey - = DTW,,(C,Q) if cachegyc.value = d return prunedByDTW
return cacheg . value

22

LazyAssessNN Algorithm

2. Check lower bounds DTW and LB Keogh from larger
from previous window window (property 2 & 3)

if cachegcis empty do cache, = LB_Kim(Q,C
if cacheg.stoppedAt ==|DTW,, ., fnd wisvAlid then
if cachegc.value = d return prunedByD else return cacheg,.value

if cachegc.stoppedAt == LB_Kim or [LB_KeoghW+,J then
if cachepc.value = d return prunedByLB

cachey - = LB_Keogh,,(Q,C) if cacheyc.value > d return prunedByLB
cachey - = LB_Keogh,,(C,Q) if cacheyc.value > d return prunedByLB
cachey - = DTW,,(C,Q) if cachegyc.value = d return prunedByDTW
return cacheg . value

23

4. If current winc.jow w 3. Use DTW from previous window (w + k) if
is not valid current window w still valid (property 1)
if cacheycisempty do cachey = LB_Kim(0,
if cacheg.stoppedAt == DTW,,,, and |w isvalid| then
if cachegpc.value = d return prunedByDTW else return cacheg.value

if cacheg.stoppedAt == LB_Kim or LB_Keogh,,;, then
if cachepc.value = d return prunedByLB

cachey = LB_Keogh,,(C,Q) if cachepc.value = d return prunedByLB
cachey - = DTW,,(C,Q) if cachegyc.value = d return prunedByDTW
return cacheg . value

[cachey - = LB_Keogh,,(Q,C) if cacheyc.value > d return prunedByLB

* Next call to LazyAssessNN will be with a smaller w
* Possible to use Early Abandon on LB_Keogh and LB_Improved [1]

[1] Lemire, D. (2009). Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern recognition, 42(9), 2169-2180.

24

Fast Fill the Nearest Neighbour Table

NN. fillAll(_,) V{w,N} < Initialise NN table with o NN distance
for s« 2toN do < Start with second series
for weL—-—1downto0 do <«—— start from largest window
if NNZ;S # (@ then < a. Check if NN for T; exist at this window

for t«1tos—1 do <«—— a. Update NN for all previous series

res = LazyAssessNN(TS, T, w, NNVTj) if resnotpruned then NNVTj = (T, res)
else
for t<1tos—1 do

—— res = LazyAssessNN(Ty, T, W,NNVTj) if resnotpruned then NNVTj = (T, res)
e res = LazyAssessNN(TS, T;, W,NNVTV’:) if resnotpruned then NNVTVt = (T, res)

T. . T. T.
for w' € NNMf.Valld do NNV;, — NNV; <4 d. Propagate NN for all valid windows

== pb. Find NN for current series

== c. Check if current series T; is NN for previous series

25

Fast Fill the Nearest Neighbour Table

 Build table for a subset T' € T of increasing sizeuntil T’ =T

1. Start with 2 time series T' = {T;, T, } and fill the table asif T' is the
entire dataset, startingfromw =L —1tow =0

* T, is the nearest neighbour of T; and vice versa

2. Add a third time series T3 from T\T' to T', T' = {T, T,, T3}
a. Check if nearest neighbour exists for T;
b. Find the nearest neighbour of T3 within T'\T; = {Ty, T,}
c. Checkif T; is the nearest neighbour of T; and/or T,
d. Propagate nearest neighbour of T3 for all valid windows

3. Repeat step 2 with the next time series, T,, in T\T until T' =T

FastWWS Example

* Let T be a training dataset of 4 time series, T = {Ty, T, T3, T4 }
* Length of each time series is L = 24

YV Y A V

27

Cache

StoppedAt

Value

cacher, r,

LB 1Klm

0.040

[Precompute LB Kim]

FastWWS Example

Reference: Nij(window validity, dyn)

w 0 1 2 3 4 5 22 23
Tl co co co co co co co T,(5, 4.254)
T2 oo oo oo oo oo T,(5, 4.254) T,(5, 4.254) | Ty(5, 4.254)

\

1. Initialise Cache & NN Table with co NN distance, NN. fillAll(_,) V{w, N}
2. StartwithT' ={Ty,T,}, w = 23,dyy = o and Query: T,, Candidate: T;

* LazyAssessNN(T,,T,, 23, x):

* Assign T; as the Nearest Neighbour for T, at w = 23 and vice versa for Ty

* cacher, 1, = LB_Kim(Ty,T,) = 0.040 < o continue
* Compute cacher, , = LB_Keogh,3(T;,T,) = 0.000 < o continue
* Compute cacher, r, = LB_Keogh,3(T3,T;) = 0.046 < o0 continue

'J

[Propagate NN\Z,2

acrossw = 22to 5

]

* Compute cacher, r, = DTW,3(Ty,T,) = {validTill = 5,4.254} < co return cacher, r,.value

* Propagate Nearest Neighbour of T, atw = 23 forw = 22to 5

28

Cache

StoppedAt

Value

cacher, r,

DTW,5

4.254

|

Update cache every time
we compute a distance

FastWWS Example

Reference: Nij(window validity, dyn)

w 0 1 5 22 23
T1 oo oo T,(5, 4.254) T,(5, 4.254) | T,(5, 4.254)
T2 oo oo T,(5, 4.254) T, (5, 4.254)\T\T1(5, 4.254)

3.

4.

Continue withw = 22, dyn = 4.254 and Query: T,, Candidate: T}

* Since we have NN for T, at w = 22, we have to check if T, is NN of T}

* LazyAssessNN(T,,T,, 22, x):

e Assign T, as the Nearest Neighbour for T; at w = 22

* cacher, r,.stoppedAt == DTW,3 and w = 22 s valid

* cacher, r,.value = 4.254 < oo return cacher r,.value

Repeat step 3 for all windows, w € {21, ..., 5}

.

w = 22 is still valid
~ DTW,, (T, T)
= DTW,3(T, T2)
= 4.254

J

29

Cache StoppedAt Value
cacher, r, DTW: 4.254 F WWS E I
Reference: Nij(window validity, dyn)
w 0 1 2 3 4 5 22 23
Tl T,(0, 11.89) | T»(1, 8.972) | T,(2,7.341) | T,(3, 6.243) | T,(4, 4.814) | T,(5, 4.254) T,(5, 4.254) | T,(5, 4.254)
TZ T,(0,11.89) | T;(1,8.972) | T,(2,7.341) | T4(3, 6.243) | T4(4, 4.814) | T;(5, 4.254) T,(5,4.254) | T,(5, 4.254)

5. Continue withw = 4,dyy = o and Query: T,, Candidate: T}
* LazyAssessNN(Ty,T,,4,»):

cacher, r,.stoppedAt == DTW5 and w = 4 is not valid
cacher, r,.value = 4.254 < c0 continue

Compute cacher, , = LB_Keogh,(T;,T;) = 0.000 < o continue

Compute cacher, r, = LB_Keogh,(T,,T;) = 2.076 < © continue
Compute cacher, 7, = DTW, (T, T;) = {validTill = 4, 4.814} < o return cacher, r,.value
* Assign T; as the Nearest Neighbour for T, at w = 4 and vice versa for T}

6. Repeat step 5 for all windows, w € {3, ..., 0}

w = 4 is not valid, recompute

DTW if necessary

Cannot propagate NN as
window is only valid forw = 4)

30

Cache StoppedAt Value
cacher, r, DTW, 11.89
waen |k o | FQStWWS Example
cacher, r, LB_Kim 0.317
Reference: NNaf(window validity, dyn)
W 0 1 2 3 4 5 22 23
T 1 T,(0, 11.89) | Ty(1, 8.972) | T,(2, 7.341) | Ty(3, 6.243) | Ty(4, 4.814) | T,(5, 4.254) T,(5, 4.254) | T,(5, 4.254)
T2 T,(0,11.89) | Ty(1,8.972) | Ty(2, 7.341) | Ty(3, 6.243) | Ty(4, 4.814) | Ty(5, 4.254) Ty(5, 4.254) | Ty(5, 4.254)
T3 (o @ (o @ (o @ (o @ (o @ (o @ (o o/ (o o/
| J
7. AddTs, T’ ={Ty, Ty, Ts} !

* cacher, r, = LB_Kim(Ty,T;5) = 0.361 <
* cacher,r, = LB_Kim(T,T3) = 0.317 <
* Since LB_Kim(T,, T3) < LB_Kim(Ty, T3), start with (T, T3) pair

\

When adding a new
series, initialise the
row to o - meaning
no NN candidate yet

J

31

Cache StoppedAt | Value DTW23(T2,T3) = 1.612 < 4.254
cacher,r, | DTW, 11.89 Update NNz = T
23 3
aiers, | nxm |0 | FQSEWWS Example
cacheTZ,T3 LB Kim 0.317
Reference: Nij(windo validity, dyn)
w 0 1 2 3 4 5 22 | 23
T 1 T,(0, 11.89) | Ty(1, 8.972) | T,(2, 7.341) | T,(3, 6.243) | T,(4, 4.814) | T,(5, 4.254) T, (5, 4.254) XZ(S' 4.254)
T2 T,(0,11.89) | Ty(1,8.972) | T,(2, 7.341) | T.(3, 6.243) | T,(4, 4.814) | Ty(5, 4.254) T,(5, 4.254) | T5(4, 1.612)
T3 co co co co co oo oo T,(4, 1.612)

8. ForT,,T;,w = 23,dyy = 0 and Query: T, Candidate: T,

* LazyAssessNN(T,, Ts, 23, o):
* cacher, r..value = 0.317 < © continue
* Compute cacher, r, = LB_Keogh,3(T3,T5) = 0.000 < o continue
* Compute cacher, r, = LB_Keogh,3(T,T3) = 0.000 < © continue
* Compute cacher, r, = DTW,3(T,,T5) = {validTill = 4,1.612} < oo return cache.value
* Assign T, as the Nearest Neighbour for T3 at w = 23
* Since DTW,5(T,,T5) = 1.612 < DTW,5(T;,T,) = 4.254, Update T; as the Nearest Neighbour for T, atw = 23

/

[Nearest Neighbour for T5 is T,]

32

Cache StoppedAt | Value DTW23(T1, T3) = 3.326 < 4.254
cacher, 1, DTW, 11.89 Update NN% =T,
aiers, | nxm |0 | FQSEWWS Example
cacher, r, DTW,; 1.612

Reference: NNaf(window lidity, dyn)
w 0 1 2 3 4 5 22 \ 23
T 1 T,(0,11.89) | T,(1,8.972) | T,(2, 7.341) | T,(3, 6.243) | T,(4, 4.814) | T,(5, 4.254) T, (5, 4.254) | T5(2, 3.326)
T2 T,(0,11.89) | T,(1,8.972) | T,(2,7.341) | T,(3, 6.243) | T,(4, 4.814) | T,(5, 4.254) T,(5, 4.254) | Ts(4, 1.612)
T3 co co co co co co oo T,(4, 1.612)

9. ForTy,T;,dyny = 1.612,DTW,5(Ty, T,) = 4.254 and Query: T;, Candidate: T;
» LazyAssessNN(T;,Ts,23,1.612):
* cacher r,.value = 0.361 < 1.612 continue

 Compute cacher, r, = LB_Keogh,3(T;,T3) = 0.000 < 1.612 continue
 Compute cacher, r, = LB_Keogh,3(T;,T3) = 0.039 < 1.612 continue

* Compute cacher, r, = DTW,3(Ty, T3) = {validTill = 2,3.326} > 1.612 return prunedByDTW

* No change to Nearest Neighbour for T3 atw = 23
* Since DTW,5(Ty,T3) = 3.326 < DTW,5(T;,T,) = 4.254, Update T5 as the Nearest Neighbour for T; atw = 23

No change to NN§33

33

Cache StoppedAt Value

cacher, r, DTW, 11.89

aaen | o | ss | FQSEWWS Example

cacher, r, DTW,; 1.612

Reference: Nij(window validity, dyn)
W 0 1 2 3 4 5 22 23
Tl T,(0, 11.89) | T,(1, 8.972) | T,(2, 7.341) | T,(3, 6.243) | T5(2, 3.326) | T5(2, 3.326) T5(2,3.326) | T5(2, 3.326)
TZ T,(0, 11.89) | Ty(1, 8.972) | Ty(2,7.341) | Ty(3, 6.243) | T5(4, 1.612) | T5(4, 1.612) T5(4,1.612) | T5(4, 1.612)
T3 oo co oo oo T,(4,1.612) | T,(4, 1.612) T,(4,1.612) | T,(4, 1.612)
T T T \ r’
10. Now we are sure about NN,3, NN,% and NN,3

* We can update NN for Ty, T,, T5 forw = 22 to 4 since NN% is valid untilw = 4

. NN% is valid until w = 2 and will be updated later when we move ontow = 2
* Since DTW,5(T,, T3) = 1.612 < DTW,5(Ty, T3) = 3.326, start with (T, T3) pair forw = 3

* DTW,(Ty,T5) = DTW,3(T;,T3) 4 T N\
e DTW,(T,, T3) = DTW,3(T,, Ts3) Propagate NN, and
update NNZ;}, NN‘T/:,2 across
w=22to4
.

34

Cache StoppedAt Value

cacher, r, DTW, 11.89

e | o, | FQStWWS Example

cacher, r, DTW, 1.612 .

Reference: NN, ;(window validity, dyn)

W 0 1 2 3 4 5 22 23
T1 T5(0, 4.911) | T5(1, 3.486) | Ts(2,3.326) | Ts(2,3.326) | Ts(2,3.326) | T5(2, 3.326) Ts(2,3.326) | T5(2, 3.326)
T2 T5(0, 4.395) | T5(1,2.598) | Ts(2, 1.882) | Ts(3,1.614) | Ts(4, 1.612) | T5(4, 1.612) Ts(4,1.612) | T5(4, 1.612)
T3 T,(0, 4.395) | Ty(1,2.598) | T»(2, 1.882) | T,(3, 1.614) T»(4, 1.612) | T»(4, 1.612) T,(4,1.612) | T,(4, 1.612)

11. For T,, T3 continue with w = 3, dyy = o and Query: T3, Candi
» LazyAssessNN(T,,Ts, 3, o):

* cacher, ..stoppedAt == DTW, and w = 3is not valid

cacher, r, = 1.612 < o continue

Compute cacher, r, = LB_Keogh3(T;,T3) = 0.421 < © continue
Compute cacher, r, = LB_Keogh3(T5,T;) = 0.328 < 0 continue
Compute cacher, r, = DTW;5(T,, T5) = {validTill = 3,1.614} < oo return cache.value
* Assign T, as the Nearest Neighbour for T3 at w = 3
* Since DTW5(T,,T5) = 1.614 < DTW;(T;,T,) = 6.243, Update T; as the Nearest Neighbour for T, atw = 3

12. Repeat the algorithm for all windows, w € {2, ..., 0}

w = 3 is not valid,
recompute DTW if
necessary

35

FastWWS Example

Reference: Nij(window validity, dyn)

w 0 1 2 3 4 5 22 23

T 1 T3(0,4.911) | Ts(1,3.486) | T5(2, 3.326) | T5(2, 3.326) | Tx(2, 3.326) | T:(2, 3.326) Ts(2, 3.326) | T5(2, 3.326)
T2 T,(0, 1.658) | T,(1,0.632) | T,(2, 0.620) | T,(3,0.599) | T,(3,0.599) | T,(3, 0.599) T,(3,0.599) | T,(3, 0.599)
T3 T,(0, 4.395) | T,(1,2.598) | T,(2, 1.882) | Ty(3, 1.614) | T»(4, 1.612) | T,(4, 1.612) T,(4,1.612) | T,(4, 1.612)
T4 T,(0,1.658) | Ty(1,0.632) | T,(2,0.620) | T,(3,0.599) | T,(3,0.599) | T,(3, 0.599) T,(3,0.599) | T,(3,0.599)

13. Continue adding T, to T’ and repeat previous steps until T' = T = {T, T, T3, T, }

36

FastWWS Example

w 0 1 2 3 4 5 22 23
T, [T | T, | T: | Ts | T, | Ty T, | T,
T, | & | T, | T, | T, | T, |T, T, | T,
. ' | T, | T, | T, | T, | T, T, | T,
. \&h | T, | T, | T, | T, | T, T, | T,
Acc 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

14. Classify every instance for each window in one pass of the table
* Yields the best window at w = 0 with LOO-CV accuracy of 0.75

Experimental Evaluation

* Evaluate the efficiency of FastWWS |for w=0toL do
» LOO-CV with NN Search error =9

for each sinT do
1. DTW with LB Keogh (Baseline) nng = nn_search(s, T\s, w)

2. UCR Suite if nng.class # s.class then error++

3. Pruned DTW with LB Keogh
] ith 4 DTW if error < bestError then
4. UCR Suite with Prune bestWW = w

e LOO-CV with FastWWS bestError = error

 Exhaustive search on all methods
* Average results over 10 runs for different reshuffling of T
e 85 benchmark time series datasets hitp:;//www.cs.ucredu/~eamonn/time_series_data/

FastWWS is FASTER and more EFFICIENT than all known methods!

8
10 HandOutlines (L = 2709) - 1000x
a DTW with LB Keogh 105 days
5 N ; DTW with UCR Suite 100 days
107 [n
o FastW\WSearch is faster here .§ * PrunedDTW with LB Keogh 15 days
]
- ;ﬁ PrunedDTW with UCR Suite 14 days
= 104 . ' FastWWs 2.5 hours
[
= 100K SITS
L]
i #1_
o ﬁ Average speed up
2 402 - On the N% Term
I3 i ¥ N < 200 = 106x
g Competitor is faster here N > 200 = 184x
-
I ® | B Keogh
0% | ® UCRS 1‘.':’,: On the L3 Term
State of the arts: | 10s v e L <300 = 67
> LB_Keogh-PrunedDTW = = 0/X
FastWWS: 1s ¢ UCRSuite-PrunedDTW L > 300 = 250x
1072 '
1072 10° 102 104 108 108

FastWWSearch, search time (s)

39

FastWWS can SCALE too!

LB Keogh - 16 hours LB Keogh - 5 days LB Keogh - 18 days
UCR Suite - 7 hours UCR Suite - 1.6 days UCR Suite - 7 days
FastWWs - 17 mins FastWWS - 2 hours FastWWS - 6 hours

At just above 20k, l 10° -
LB Keogh takes

more than a day

A

£ 10t | More than a wee
@ |
£ : at 100k
= |
s i | | FastWWS takes
o 10
| | only 6 hours
@ | L \o y,
(| |
At around 45k, _ : :
UCR Suite takes .1DD | DTW with LEB_Keogh | The short Iength
more than a day | DTW with UCR Suite I _
| | | (L = 24) affects
| PrunedDTW with LB_Keogh : p dDTW
| Our Method - FastWW&earch | rune
1D-2 | |]] |] 1 |] |
0 1 2 3 4) 6 7 8 9 10

Size of training dataset «104 40

FastWW5Search--PrunedDTW, search time (s)

10% ¢
107§

10%

FastWwWSearch is faster here
46 datasets

FastWWS with PrunedDTW

FastWWsSearch--PrunedDTW is faster here
39 datasets

[
DI
fed

107t

10” 10! 107 10° 10*
FastWWSearch, search time (s)

FastWWS-PrunedDTW

1. Compute Euclidean Distance
(w=0)

2. Use it as upper bound to prune
DTW at larger window

* Not necessary faster

* FastWWS is faster on 55% of the
Benchmark datasets

* Due to overhead in PrunedDTW
in checking the upper bounds

41

Classification Accuracy

Best warping window learnt by the following methods

Datasets LB Keocn UCR Surte LB_KeocH UCR FastWWSearch
PruNeDDTW SuiTE
PruNEDD TW
AHlwords 24 24 24 24 24
Adiac [§] 3 [§] G [§]
ArrowHead 0 0 0 0 0
Beef 0 0 0 0 0
BeetleFly 36 36 36 36 36
BirdChicken 33 33 33 33 33
CBF 14 14 14 14 14
Car 9 9 9] 9
ChlorineConcentration 0 0 0 0 0
CinC _ECG _torso 10 10 10 10 10
Coffee 0 0 0 0 0
Computers T4 ' T4 T4 74
Cricket_X 31 31 31 31 31
Cricket_Y a7 47 47 a7 47
Cricket_Z 15 15 15 15 15
DiatomSizeReduction 0 0 0 0 0
DistalPhalanxOutline AgeGroup 1 1 1 1 1
DistalPhalanxOutlineCorrect 2 2 2 2 2
DistalPhalanxTW 0 0 0 0 0
ECG200 0 0 0 0 0
ECGH000 1 1 1 1 1
ECGFiveDays 0 0 0 0 0
Earthquakes i 17 7 17 7
ElectricDevices 13 13 13 13 13
FISH 19 19 19 19 19
FaceAll 4 4 4 4 4
FaceFour G § G 6 G
FacesUCR 16 16 16 16 16
FordA 2 2 2 2 2
FordB 6 G 6 [§] i}

Accuracy should be the same as
the window found is the same

1 —_

-
0.9
g
3
% 0.8
Competitor is more accurate here
5 0.7}
g
= 0.6
i
i
m 0.5F
W
2 0.4
o
EUE_ / FastWWSearch is more accurate here
E
8 0.2 ".r“./ L LB_IEEDl__:]h
r’,.f‘ m UCR Suite
0.1k - 4 LB Keogh-PrunedDTwW
' J/f % UCRSuite-PrunedDTwW
D (| 1 1 1 1 1 (| (| (|
0 0.1 0.2 0.3 0.4 0.2 0.6 0.7 0.8 0.9

FastWwWSearch, classification accuracy

and FastWWS is EXACT

42

Conclusions

* A novel and exact algorithm to speedup the search for the best
parameter (warping window) for DTW
* FastWWS is more EFFICIENT and FASTER
* FastWWS can SCALE

e Our results, datasets and source code are online at
* https://bit.ly/SDM18
* https://github.com/ChangWeiTan/FastWWSearch
e Slides: http://changweitan.com/research/SDM18-slides.pdf

43

https://bit.ly/SDM18
https://github.com/ChangWeiTan/FastWWSearch
http://changweitan.com/research/SDM18-slides.pdf

Future Work

e Search for the best parameter for other TS similarity functions
* LCSS (6,¢), MSM (c¢), ERP (g, A) etc.
 Satisfies the three properties: 3

1. Its distance stays valid for some parameters \;
2. Its distance is monotone with its parameters
3. Its lower bound is monotone with its parameters

nnnnnnnnnnnnnnnnnnnnnnnnn

N
\/ warping path for Ty is valid until w=3
o5k . . .
0 5

1
Warping Windows, w

 Scaling up the State of the Arts in Time Series Classification

* Elastic Ensembles (EE) [1]
* Collective of Transformation-Based Ensembles (COTE) [2]

[1] Lines, J., & Bagnall, A. (2015). Time series classification with ensembles of elastic distance measures. Data Mining and Knowledge Discovery, 29(3), 565-592.
[2] Bagnall, A., Lines, J., Hills, J., & Bostrom, A. (2015). Time-series classification with COTE: the collective of transformation-based ensembles. IEEE Transactions on Knowledge and Data Engineering,
27(9), 2522-2535.

MONASH University

Information Technology Sisenes

Thank you!
Questions and Answers

®

CW. Tan M. Herrmann G. Forestier

F. Petitjean

This work was supported by the Australian Research Council under grant DE170100037. This material is based
upon work supported by the Air Force Office of Scientific Research, Asian Office of Aerospace Research and
Development (AOARD) under award number FA2386-16-1-4023

“: bit.ly/SDM18

o
.

.
tt

M chang.tan@monash.edu o github.com/ChangWeiTan/FastWWSearch

LT
[153

45

